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Abstract

We begin by considering a genetic stepping stone model with sites on the
one-dimensional lattice n~'Z. Within each site, particles are subject to
Moran model interactions with selection. Between interactions, they mu-
tate and migrate independently. If the population density is held con-
stant while the lattice density n increases, then—under suitable parame-
ter scalings—the migration random walks converge to Brownian motions
and the limiting interactions are determined by Poisson counting processes
driven by clocks proportional to the local times at zero of the distances be-
tween pairs. The result is a finite-density collection of Brownian motions
with local-time Moran interactions.

We study the limiting behavior of these models as the population den-
sity increases to infinity by ordering the particles with randomly assigned
“levels” in the non-negative reals R". If neutral interactions are restricted
to occur in only one direction, so that the higher-level particle changes its
type to that of the lower-level particle, the result is an ordered model that
can be extended to infinite densities.

Restricted to a given maximum level, these infinite-density ordered
models have the same empirical location/type distributions as the origi-
nal, symmetric Moran models. In the stepping-stone case, we establish
this by means of a generator argument. In the Brownian case, we establish
it through a more direct coupling.

Under appropriate initial conditions, these ordered models have a sim-
ple Poisson structure. In the Brownian case, for each t, there exists a
measure-valued diffusion ~v; such that the point process consisting of the
location, type, and level of each particle is conditionally Poisson with mean
measure v¢ X {p+.

We study this diffusion process for the Brownian case with selection,
showing that it almost surely has continuous paths and giving a martingale
characterization.
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Chapter 1

Spatial Moran Models

“Interestingly, according to modern astronomers, space is finite.
This is a very comforting thought—particularly for people who
can never remember where they have left things.”

— Woody Allen (b. 1935)

1.1 Introduction

We wish to model the spread of genetic innovation through spatially struc-
tured populations. In this paper, we present a number of monoecious,
haploid particle models that incorporate explicit one-dimensional spatial
structure and local reproductive interactions between particles with selec-
tion.

In this chapter, we consider Moran models with spatial structure and
selection. We begin, in the next section, by briefly considering the standard
Moran model, a finite-population, genetic model where each particle inter-
acts with all other particles in the population. In Section 1.3, we construct
a stepping stone model on a one-dimensional lattice of equally spaced, dis-
crete sites with Moran-like interactions between particles located at the
same site. In Section 1.4, we consider the limiting model that results as we
increase the density of the lattice of discrete sites while keeping the part:-
cle density constant. The particle motions converge to Brownian motions
while their limiting interactions are determined by the local times at zero



of the distances between particle pairs.

In Chapter 2, we study the stepping stone model in more detail. We
begin by introducing an ordering on the particles, in the form of R -valued
levels. By modifying the model of Section 1.3 so that neutral interactions
occur in only one direction determined by this ordering, we construct an
ordered model with the same empirical location/type distribution as the
original model. The value of this ordered model is that it may be mean-
ingfully extended to infinite densities, as we do in Section 2.3 to construct
an infinite-density, neutral stepping stone model.

In Chapter 3, we construct an ordered, infinite-density, Brownian model
with local-time interactions and selection. In the neutral case, this ordered
model embeds the empirical location/type distribution of the corresponding
symmetric Moran model (the limiting model of Section 1.4) for all finite
particle densities K > 0. The ordered model is conditionally a Poisson
point process that carries a location/type measure-valued process vi. In
fact, v, is the limiting measure-valued diffusion of the model of Section 1.4
as the particle density increases to infinity. We prove that v, almost surely
has vaguely continuous paths and characterize it by means of a collection
of martingales whose quadratic variations we calculate.

1.2 Standard Moran Model

The standard Moran model of [9] describes the evolution of a population
consisting of two types of particles and having some fixed size n. In this
model, birth events occur according to a constant-rate Poisson counting
process. When such an event occurs, a random particle is selected to pro-
duce an offspring: usually, the offspring has the parent’s type, though with
some small probability, the offspring mutates to the other type. Then,
an existing particle in the population is uniformly randomly chosen to be
killed, and the offspring takes its place. Note that births and deaths are
balanced.

Many variations of this model are possible. Trivially, it may be gen-
eralized to a countable type space with mutation occurring according to
transition probabilities between types. It may also be generalized to an



uncountable type space via a mutation probability kernel and modified so
that particles mutate continuously between reproduction events, with the
offspring taking the parent’s type at the instant of birth then proceeding to
mutate independently of the parent. Additionally, particles may be subject
to fertility or viability-based selective forces.

Under certain scalings, the empirical measures of many of these vari-
ations can be shown to converge, with increasing population size, to dif-
fusion process limits. As a rule of thumb, if—as the population size n
increases—the population-wide rates of neutral and selective reproductive
events are kept of order O(n?) and O(n) respectively, then the type pro-
cess, expressed as a measure-valued, empirical process assigning mass 1]_1 to
each particle, and so taking values in the set P(E) of probability measures
on the type space E, will converge to a measure-valued diffusion, under
suitable additional conditions. For example, [6] shows convergence for a
Moran-like model incorporating selection, recombination, and mutation to
a Fleming-Viot limiting process under such a scaling.

In the following section, we will construct a stepping stone model with
Moran-like interactions: individuals reproduce at random, replacing other
randomly chosen individuals with their offspring. The distinguishing fea-
ture of our model will be that the interactions occur only between particles
at the same site. In later chapters we will see that the aforementioned
scalings can be applied to our model as well: for a particle density of or-
der O(n), if neutral and selective event counts per unit of space per unit of
time are of order O(n?) and O(n) respectively, the limiting empirical type
measure will converge to a diffusion process.

1.3 Stepping Stone Model

In this section, we construct a finite-density, stepping stone model with
local, Moran-like interactions. The particles “live” on a one-dimensional
lattice of equally spaced sites, perform independent simple random walks
across the lattice, and interact within each site in a Moran-like fashion:
each particle reproduces according to a Poisson counting process, replacing
a random particle at the same site.



For each n, we consider a countably infinite population of particles oc-
cupying the lattice n~'Z. We assume that the particles move independently
each according to a simple random walk at rate On?. Note that this scaling
is such that the particle motions converge to Brownian motions as n — oo.

We further assume that each particle j € N has a type z; in a complete,
separable metric space E. At every site, each ordered pair of particles (i, j)
at that site undergoes reproduction events at rate A/2 + o(z;, z;): particle i
produces an offspring of type z; which replaces particle j in the population;
equivalently, the type z; of particle j is changed to the type z; of particle i.
Between reproduction events, the particle types mutate independently.

The reproduction events occurring at rate A/2, independent of particle
type, will be considered neutral reproduction events, while those occurring
at rate o(z;,z;) will be considered selective reproduction events. Here, o
is taken to be a non-negative function bounded above by a constant & > 0
so that the expression o(«x, 3) — o(f3, «) represents the selective advantage
of type « over type (3. In most contexts, we can take o(x,) = o(«x)
where o(o) represents the absolute selective advantage of type « over some
baseline

Formally, for x € (n"'Z)*® and z € E®, the vectors of positions and
types of the particles respectively, we define a generator

Anf(x,z) =) BYf(x,z)+ ) Blf(x,z)
j j

+ ) (V24 ol(zi,3)) (f(x,mi(zlz)) — f(x,2))  (1.1)

i#

Xi=Xj
where n;(z|zo) == (z1,22,...,2j-1,2Z0,Zj41, - - ). Here, the migration opera-
tor B?L)j, which operates on f only as a function of the location x; of the jth

particle, is given by
Bo,f(x,z) =

on

2<f(nj(x | X; + ]/TL),Z) -;f(T]](X | X5 — ]/TL),Z) B f(x,z))

Each Bj*L is some mutation operator B* operating on f only as a function
of the type z; of the jth particle. In particular, the mutation is location-

4



independent. Also, note that the last summation in equation (1.1) is taken
over all ordered pairs of distinct particles sharing the same location.

We may construct an (n'Z)® x E®-valued solution (X™, Z™) to the
martingale problem A, explicitly on the probability space (Q,, P) as fol-
lows. Asin [2], we assume the existence of a B(E) x B[0, co) X F-measurable
mutation mapping

Y:Ex[0,00) x Q= E (1.2)

such that for all y and w, we have Y(y,0,w) =y and Y(y,-,-) a Markov
process with transition kernel Q(t,y, dy’) having sample paths in D ¢ [0, o).
We will also assume the following:

Hypothesis 1.3.1. Assume that for each y € E, the process Y (y, -, ') is the
unique solution to the martingale problem (B¥,3,), and assume that the
generator B" is closed under multiplication and has ||B*g|l. < oo for all
bounded g € D (B").

Let X™(0) and Z™(0) be given. Let {WjZ : j € N} be iid simple,
symmetric, rate 1 random walks on Z, let {N{‘j, N% :1#7j € N} beiid, rate 1
Poisson counting processes, let {Yjx:j € N,k € Z*} be iid copies of Y, and
let {Cx :j € N,k € Z*} be iid uniform on [0, 1] such that (X(“)(O), z(“)(O)),
Wi, (N3], {N%}, {Y;i), and {G} are mutually independent. Define the

particle location process X™ by

XM (t) := X (0) + %w?(enzt) (1.3)

To define the type process Z(n), we will need to define, for each ordered
particle pair (i,j) with i # j, counting processes for neutral reproduction
events (where j copies i’s type) and potential selective reproduction events
(where j may copy 1i’s type) as follows. Define the neutral event counting
process by

t
Ay A (D
Vi () == Ny <§J ‘l{xgn)(s):Xgn)(s)}dS) (1.4)



and define the potential selective event counting process by

t
(TL),O' -— Nl =3
where G is the upper bound for the selection function o.

For each j, define the counting process

i#
This counts all neutral and potential selective reproduction events directly

affecting the type of j. For k € N, let Tjc be the kth jump time of \7j, and
define

Fi= Y AAVII N ) + Y AAVEY ()
i# i#
tjk = Z A\"/i(;—t])}\(%jk)
i#
Almost surely, the summations ¥;, and Tj, each have exactly one non-zero
term. Thus, ¥;x gives the particle i whose type j either copies in the case
of a neutral event (where Tjx = 1) or may copy in the case of a potential
selective event (where U;x = 0) at event time Tj.
Finally, with the conventions Tj o := 0, ¥;0 :=j, {0 := 1, and Z)@(O—) =
Z.(n](O), we may define the type process Z™ as the unique solution to the

j
system of equations

~

Z§“)(t) = Yjx (fb (Z%i(fjk—), Zj(n)("fjk—),tjk, Cjk) t— "fjk> ,

"Afjk <t< ;E'j’kJr.] (16)
where ¢ is given by

Z1, CS((_)-

z2, (> (0 (1)

d)(zl yZ2, L, C) = {



Remark 1.3.1. Existence and uniqueness of a solution to (1.6) depends
on the choice of initial location vector X(™(0). In particular, a unique
solution will exist if it can be established that, for each fixed time T > 0
and particle j € N, the number of events Vj(T) and the total number of
particles that may have “influenced” j’s type Zj(n](T) at time T through a
chain of interaction events are both finite. A rigorous proof would take
much the same form as the proof of the existence of the processes ® and
U in Theorem 3.3.1 and Lemma 3.3.2. In particular, under the stationary,
Poisson initial distribution described below, this argument applies and a
unique solution exists. Note that we refer here only to the uniqueness of the
solution to (1.6), not to the uniqueness of the martingale problem for An.

Remark 1.3.2. In defining the type process zZm above, we first specified
neutral {\781 ]’)‘} and potential selective {\_/L()TL )’U} event counting processes in
equations (1.4) and (1.5) respectively. We then defined the processes V;,
Tk, Vix, and Ty deterministically in terms of \71(]“ A and \_/L(]TL )° Finally, Z™
was defined as the unique solution to an equation (1.6) involving these de-
rived processes, the initial types Z(™(0), the processes Yjx, and the uniform
random variables (jy.

In later sections, we will need to apply this procedure several times.
That is, we will need to define a type process as the unique solution of
a system of equations involving initial types, mutation processes, uniform
random variables, and several intermediate processes all deterministically
dependent on neutral and potential selective event counting processes.

Rather than repeat the derivation each time, we will introduce the fol-
lowing notion. If we write

(z,v,7,7,1) == %(20,Y,V",¥°,, 0 ' 0)

we mean to indicate that we are defining v by

vy 1= Z (vi‘] +9)

i#



defining Tjx to be the ordered jump times of v;; defining 'y and 1 by

Yik = Z IA\){\] (Tjk) + Z 1A\_)g (Tjk)
i# i#j
ij = Z AV%(Tjk)
i#
adopting the conventions T := 0, vj0 :=], 0 := 1, and z;(0—) := z0;; and
finally defining z as the unique solution to

zi(t) = Y5« (CI) (Zyjk(rrjk_)) z(Tj—), Yk, Cjk) yt— ’fjk) y o Tk S < T
In particular, the above formulation could have been written
(z’(n)) V) %) ’?’ I) = 3’(z’(ﬂ') (O) ) Y) V(n)’}\) \_/(n)‘o-’ C) 6-71 G) (1'8)

The intuitive interpretation of (1.6)—and so (1.8)—is this. Particles
mutate independently between interactions. At an interaction time 7y,
the function ¢(-) determines the new type of particle j. In the case of a
neutral event, we have T;. = 1, and j always copies the other particle’s
type. In the case of a potential selective event, where ;. = 0, a biased
coin is flipped. The bias depends on the selective advantage of the particle
Y;x over j: if it is large enough, j copies ¥j's type; otherwise, j keeps its
current type.

To make this intuition more precise, note that we have

o0
7 (n),o
vij (t) = Z ]{fjkft}] {W"’jk:iﬂ {Tjx=0}
k=1

so we may define the actual (cf. potential) selective event counting processes
M \ / (TL),O' M
as a filtering of V;;™" given by

o
M),o ey .
vi)' (t) = Z ]{%ikﬁt}]{f’ikzi}l{tikzo}] {C]’kfa'_1U<z£n)(”~rik*)>z]§n)(:ﬁ'k*))}
k=1

These processes satisfy

t
ViVo(t) = Ng (Joc (2M(s),2M(s) 1 {Xgn)(s)zxgn)(s)}dg (1.9)



for iid, rate 1 Poisson counting processes N{ independent of other aspects
of the model. Furthermore, in the case where there is no mutation, the
particle type process Z™ then satisfies

ZM () +ZJ( —Z(s=)) @ (Vi s) + ()

i#

For convenience, we will write the model constructed above as Y. That
is, for initial location and type vectors X(™(0) = X, and Z™(0) = Z,
respectively, we will define

’?n(xm ZO) = (X(n)a z(n))

Implicitly, of course, Y. depends on the random variables WZ N{‘], Ng,
Y;x, and (jx and the parameters 0, A, and o defined above.

Let us now describe one special case for the distribution of the ini-
tial locations and types (Xo, Zo). Let Vo ) be a measure on location/type
space n~'Z x E with marginal location measure ’Vo ( XE) =2 cn1zn 15,
and let (Xo, Zo) be some 111dex1ng of the points of a Poisson point process
with mean measure Kvo for some particle density K > 0. The conditions
of Remark 1.3.1 hold, so a unique solution to (1.6) exists for this initial
distribution. If we define the vector Y™ by

n) _
8= Tmmim (1.10)

jeEN

which gives, for each k € Z, the number of particles at site k/n at time t,
then the process Y™ is stationary, and the {Yﬁn)(t)}kez are iid Poisson with
mean K/n for all t > 0. To see this, we will apply the following Lemma.

Lemma 1.3.2. Let E and E’ be metric spaces, and let h: E — E' be
Borel measurable. If I 1s a Poisson point process on B with o-finite
mean measure v on B(E) such that v' :==voh™! is o-finite on B(E'),
then for an indexing of the points

r=Yy &,

jeN

9



the random measure
F' = Z 5}1(&].]
jeEN

18 a Poisson point process on E' having mean measure v'.

Proof. For A € B(E'), we have h™'(A) € B(E). Thus, I'"(A) =T(h '(A))
is Poisson with mean v(h '(A)). Also, for disjoint A, B € B(E’), we have
h~'(A) and h~'(B) disjoint, so I'"(A) = I'(h"'(A)) and I'"(B) = I'(h"'(B))
are independent. O

Corollary 1.3.3. If (Xo, Zo) ~ Poisson(Kvén]) then the per-site particle
counts YV (t) are 44d Poisson mean K/n for all t > 0.

Proof. We note that (Xo,j,WjZ) are the points of a Poisson point process
on n7'Z x D z[0, co) with mean measure v := (K D xen-1z %6,() x 207 where

207 is the law of WZ. Since h given by

h:n7'Z x D[0,00) » N Z
: (Xoj, WE) = XIM(t) = Xo + 2WH(Bnt)

is measurable and v/ := v o h™! is o-finite, we have I’ := 2 6X§n)(t) a
Poisson point process on n~'Z with mean measure v’ by Lemma 1.3.2.

In particular, we have Yé“)(t) = I"({k/n}), the I"-measures of disjoint
sets. To prove the result, it remains only to show that v/({k/n}) = K/n
for all k € Z. This may be calculated explicitly, or we may observe that it
follows from the initial distribution and the symmetry of the system. [

Thus, for model Y., with (Xo, Zo) distributed Poisson(Kv(()“)) which we
may write
(XM, ZM)y = ?n(Poisson(Kvé“]))

the interpretation is as follows. We begin with the lattice n~'Z populated
by iid, mean K/n Poisson particles per site. These particles migrate accord-
ing to iid, rate On? simple random walks WjZ(ant) /n so that the initial
location distribution is stationary. The processes \“/L(JTl X count neutral repro-
duction events whereby particle i produces an offspring replacing particle j
(or, equivalently, particle j “looks at” particle i and copies its type); and

10



the processes \M/L(]TL )% count the selective reproduction events analogously.
Observe that \"/l(JTL " and VL(;L ho only increase while particle 1 and particle j
share the same site. Between reproduction events, the particles mutate
independently according to the generator B*.

1.4 Brownian Model

In the previous section we observed that the scaling was such that indi-
vidual particle motions converged, as n — oo, to Brownian motions. In
this section, we will fix a particle density K > 0 and let n — oco. Under
a suitable scaling of the interaction parameters A and o, the reproduction
event counting processes will converge to non-trivial limits, and the result
will be a K-density, interacting particle model freed of the discrete sites of
the previous section. Moreover, we will be able to characterize, in the limit,
the reproduction events between an ordered pair of particles as resulting
from Poisson counting processes driven by the local time at zero of their
distance from each other.

We define the local time in the sense of [10]. Let sgn be the left-
continuous sign function given by

1, x>0
€)= o

Let X be a semimartingale. By [10] Theorem IV.47, there is a unique
adapted, cadlag, increasing process A® such that

t
IX¢ —al = [Xo — a —l—J sgn(Xs. — a)dXs + A¢ (1.11)
0

Definition 1.4.1. Let X be a semimartingale, and let A® be given by (1.11).
The local time L*(X) at a of X is the continuous part of A® given by

LX) :=Af— > (Xs—al—[Xe- — a| —sgn(X,- — a)AX;)

0<s<t

Now, let us define a sequence of models (X(“),z(“)) as follows. Let vq
be a measure on location/type space Rx E with marginal measure v,(- x E)

11



the Lebesgue measure {g on R. Fix a particle density K > 0, and let the
vector (X, Zy) be some indexing of the points of a Poisson point process
with mean measure Kv,. For each n € N, if we take Xgn)(O) = [nXo;|/M,
note that (by Lemma 1.3.2, for instance) we have (X™(0), Z,) an indexing
of the points of a Poisson point process with mean measure Kvén) where

V(()n) is given by

n

viV({k/n} x B) =vo ([g k—“) x B) (1.12)

and has marginal location measure V((,“](- XE) =3 cnz %SX. Consider
the model

(X(“), ZW) =T, (X™(0), Zo) (1.13)

Note that Corollary 1.3.3 applies, and the Y](Jl)(t) defined by (1.10) are iid
Poisson with mean K/n for all t > 0.

As n — oo, the initial particle locations X™(0) converge to X,. More-

)

over, the particle location processes Xgn , conditioned on X,, converge to

independent Brownian motions. That is, we have
X = X
where the X are given by
X; := Xo5 + VOW; (1.14)

for {W; : j € N} iid Brownian motions independent of X,. Define the
distance Xgl) between particles i and j by

X () = XM () — XM (1) (1.15)
and the limiting distance Xj; by

Xi;(t) = Xi(t) — X;(t)
so that

(n)
(X )#j = (Xy)is (1.16)



The type process Z™M is driven by the \71()TL " and \_/L(]TL ho counting pro-
cesses whose rates are proportional to the integral

t

t
L ]{Xin)(s]zx}“) (S)}ds = L 1{X¥L) (S):O}ds

By means of the following theorem, we will characterize the limiting dis-
tribution of these integrals in terms of the X;; defined above.
First, we will need the following form of the weak law of large numbers.

Lemma 1.4.2. Let &, be identically distributed with finite mean p
such that {&, Jx are independent for each n. If N(n) 25 0, then

Proof. Define

h(e,Ky) :=P { sup

By the strong law of large numbers

K

1 a.s.

X Z E1x — K
k=1

so we have h(e, Ko) —k,-00 O for each € > 0. However,

1 N(n)
Pl —— nk —
{ N ; Enkx — K

as Ky — oo for all € > 0. O

> e} <h(e,Ko) +P(N(n) <Ky) =0

We will also need this technical lemma. Its importance is the relatively
weak form of independence between N(n) and the &;.

Lemma 1.4.3. Let {&;} be identically distributed with E|&,| < co. For
any positive, integer-valued random sequence N(n) such that N(n) and
Enmy are independent for each n, we have Enm)/M 224 0.

13



Proof. Fix any € > 0, and define A,, :={w : |Enmy| > nel
Note that

D> PA,=) P(&l>ne) SroP <@ >t> dt = B&l < 00
n=1 n=1

0 € €

Therefore, by the Borel-Cantelli Lemma, P(A,, i.0.) =0.
However, since this holds for all € > 0, we have Enqmy/n 225 0. O

Finally, we turn to our theorem, which characterizes the limiting dura-
tion time at zero of a collection of sequences of random walks in terms of
the local time at zero of their limiting processes.

Theorem 1.4.4. Let {V¥} fork=1,...,K be a collection of (not neces-
sarily independent) Z-valued, continuous-time Markov jump processes
started at V¥(0) = 0 with transition intensities given by

9, j=1i+t1,
dij = :
0, otherwsse.

Define WX(t) := wk — V¥(n?t)/n such that nwX € Z and lim, WX ezists
for each k. If

WL WK = (W,..., W (1.17)

then
(WE, nj 1{W§(s)_0}29d5> = (W, L x (1.18)
0 k=1,...,.K
where L* are the local times at zero of W§.
Proof. Let sgn be the left-continuous sign function. By Theorem 1 of [11],

we have

<Wli, (WE()| — [Wk(0)] - J.sgnWE(s—)dWli(S))
0 k

= (Wé‘, (W5()| — [we(0)] —Lsgnwg(s—)dwg;(s)) (1.19)
k

14



However, by the Meyer-Tanaka Formula [10, p. 169], the right hand side is
(WE, L¥)y where L* are the local times at zero of the W.
Define the ordered exit times of V* from nw¥ (and so of W¥ from 0) by

TEm = 0
TE™ = inf{t > TO™ 1 V¥(t—) = nwk, V(1) # nwk}

Let T5™ be the duration times at nw¥ given by
=T —sup{t < TE™: VE(t) #nwkl VO

Define N*™(t) := sup{m : T&™ < t}, the counting process of V¥'s exits
from nwk.

Note, by the recurrence of V¥, we have N*"(t) =%, . oo for any
fixed n. To establish that N*"(n2t) -5, .. oo for every t € R', we
need only show that P(N*"(n?t) = 0) —,, ., 0. However, the nwkX are
eventually bounded by n(w* + 1), so it follows that

P(N*™M(n?t) = 0) < P(VX(s) < n(wk+1) Vs < n?t) 5 0

by the properties of random walks.
For each fixed n and k, note that V¥(TX") are iid for all m with distri-
bution given by

1

P(VMTE™) =nwk +1) =P(VHTEY) =nwk — 1) = 5

and the T%™ are iid exponential for all m with E1&™ = (20) .
For all t > 0, we see that

t
W) — [WE()| - j sgn WX(s—)dWX(s)
0
Nk n(nzt

=2 Z (VH(TE™Y) —nwk) "
m=1

kn(n2
Nkn(m2y) 1 e . N
e L (VAT
m=1

=2

15



By Lemma 1.4.2, we have

Nk (n2t) 1
k(Tk k\t P
Nkn NEn(nZt) (VHTE™) — k) — 5
m=1
as n — oo for all t € R*.
Therefore, by equation (1.19), we have
Nk,n(nz_)
(Wj;, 7> = (W§ L"), (1.20)
n k
However,
t Nk*n(nzt) k,n ]
J01{WE(S)=0}dS = Z F + (t - TNk n(n2t)+1 + TNk n(nzt)+]> Vo
m=1
Thus,
Nk’“(nzt) Nk ™ (n?t)

t
nL]{Wh(S)ZO}ZGds:ZG - Nkn Ty Z T

0
+ 2; (t - TNk nn2t)+1 + TNk “(nzt)+1) VO
Applying Lemma 1.4.2, we have
M (n?t)

1
Nkn let Z

as n — oo for all t € R*. By Lemma 1.4.3, we have

S
OSE( TNknn2t+]+TNkn(n2t+]>Vo<e

k
Nkn (n2t)+1 a.s.

-0

as L n(m2t)41 18 independent of N*™(n?t) for all n.
Therefore, it follows from equation (1.20) that equation (1.18) holds. [J

Proposition 1.4.5. We have

() ym [
(Xi“ ’Xjn )TLJo]{xgn)(s)=xlgn)(S)}29d8> » = (Xi, Xj, Lij)i;éj (121)
i#
where the Li; are local times at zero of the processes Xj; := X; — X;.
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Proof. We have
1
XM ) = (XM(0) = XIM(0)) + = (WZ(en?t) — WE(Bn*t))
n
so conditioned on Xy, the XSI) satisfy Theorem 1.4.4 with starting points

wi = X{™M(0) — X™(0) 2 Xoi — Xoy

The characterization of the limiting process (1.16) gives the conver-
gence (1.21) conditioned on X,. It follows from the independence of X,
and {W;} that the convergence is unconditional as well. O

In particular, Proposition 1.4.5 allows us to characterize the limiting
interactions between pairs of particles. The convergence (1.21) implies
that, if A and G are held constant while n — oo, then

~

V) + V() 25 0

U

However, (1.21) also suggests the correct parameter scaling to obtain non-
trivial limits. Let Ag > 0 and op(-,-) > O be given, and let oy < Gy for
some bound Gy. Take A = Agn, 0 = opn, and G = Gon so that o(-,-) < G.
With these parameter choices, we have the following characterization of the
limiting event processes.

Proposition 1.4.6. Let \71(;1)?‘ be given by (1.4) with A = Aon, let Vi(;l)‘a
be given by (1.5) with & = Gon, and let Ly be given as in Proposi-

tion 1.4.5. Then, we have
}\0 - 0o
1) Ne ([ 201
<49L1]> Y <29L1)>>i;éj
Proof. Since we have

(7 (M)A y7(n),0 A
(vﬁ Vs )i#i 7 (Nﬁ
(“J ]{X£“)(s)=><§“)(s)}29d5> = (L
0 i#

the result follows from the independence of N{‘j and N{’j from the X].(n]

and Lij . [
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Armed with the result of Proposition 1.4.6, we may define limiting neu-
tral event counting processes by

~ A
AL A O[

and potential selective event counting processes by

/0. N|CO 00

Then, in the notation of Remark 1.3.2, we may define a type process 4 (cf.
definition (1.8)) by

(23\7) %)‘?)i) = E(ZO)Y)V}\) \70-) C) 651 0-0) (122)

Existence and uniqueness of such a 7 is subject to the same considera-
tions as the existence of a solution Z(™ to (1.6) addressed in Remark 1.3.1.
Since we can establish that the \~/j have no explosions and that the collec-
tion of all particles whose type may have influenced particle j up to time T
through chains of interactions is finite, the existence and uniqueness follow.

Defining the actual selective event counting processes by

o0
Vi) =) Tete<o =t T we=011 (0, <o5 00 (2085020, 25 (12}
k=1

we see that these processes satisfy

VE(t) = N (Eoo (Zi(s),zj(s)) (26)1dLij(s)>

o

for iid rate 1 Poisson counting processes N{i. In the case without mutation,

the type process 7 satisfies
(Zi(s) = Z3(s-)) a (Vits) + V()

We will write the above model, with locations given by (1.14) and types
given by (1.22), as Vo so that

’?‘O(XO) ZO) = (X» z)

18



We will also define the empirical location/type process £X by
aq ]
E=) S0z (1.23)
j

It should be noted that we have not actually proved a limit theorem
for the type process here. We have merely shown that the location and
interaction processes of model Y. converge to the corresponding processes
of model 70.

The interpretation of the model

~

Yo(Poisson(Kvy))

is as follows. We begin with the real line R uniformly populated by a
K-density, Poisson collection of particles. The particles migrate as inde-
pendent Brownian motions so that the location distribution is stationary.
The neutral \717; and selective \71‘]’ events (where j copies 1’s type) are Pois-
son counting processes driven by the local time at zero of the distance
between i and j: in particular, these interactions occur only when i and j
are at the same location. Between interactions, the particle types mutate
independently.
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Chapter 2

Infinite-Density Stepping Stone
Model

“Good order is the foundation of all things.”

— Edmund Burke (1729-97)

2.1 Ordered Particle Construction

In Section 1.3, we considered a stepping stone model Y., with finite particle
density K. In this chapter, we will consider the effect of increasing the
particle density to infinity.

Recall from the discussion in Section 1.2 that, for many Moran model
variations without spatial structure, as the population size increases with
suitable scalings of the interaction parameters, the empirical type process
converges to a P(E)-valued limiting process. It would seem that the diffu-
sion limit is somehow modeling an infinite collection of particles interacting
in much the same fashion as their finite-population cousins, albeit at much
faster rates. But, as [3] points out,

while it might be convenient in applications to think of the
measure-valued diffusion as describing the evolution of a hypo-
thetically infinite population, it is difficult to make this precise.
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The point of [3], and [2] before it, is to provide infinite-particle constructions
that do make this idea precise, justifying the intuition.

The technique used in those papers ultimately consists of dynamically
reordering the particles of each finite Moran model of size n (without chang-
ing its empirical distribution) in such a way that the distributions of the
new ordered models are consistent. That is, the ordered Moran model of
size n has the same distribution as the first n particles of the ordered Moran
model of size n+1. This implies the existence of an infinite ordered particle
system with a natural embedding of each finite Moran model of size n: the
initial n particles from the infinite system form an ordered Moran model,
and a random permutation of those n particles forms the usual symmetric
Moran model. The infinite ordered model, it should be noted, carries the
limiting measure-valued diffusion process as its limiting empirical measure.

We wish to produce a similar construction for our spatially structured
models. The key idea is the modification of this technique used in [1] and
[8]. In short, we assign an iid, continuous random variable—a level—to
each particle. The usual linear ordering < of the levels gives an almost
surely linear ordering of the particles since, almost surely, no two particles
share the same level. The levels are assigned independently of the particles’
initial locations and types. Unlike the locations and types, the levels remain
constant over time.

In the remainder of this section, we will construct an ordered ana-
logue Y, of the symmetric model Y, with finite density K. The primary
importance of Y, lies in its relation to the original model ?n, so in Sec-
tion 2.2, we will establish that, ignoring the levels, the two models share
the same empirical location/type distribution. We will do this by means
of a coupling argument using the filtered martingale problem machinery
of [7]. In Section 2.3, we will construct an infinite-density ordered model
without selection.

Fix some n € N and K > 0, and let X™(0) and Z(™(0) be given. As in
the previous chapter, take {W)-Z} to be iid simple, symmetric, rate 1 random
walks, {N{‘j} and {N%} to be iid rate 1 Poisson counting processes, {Yj} to
be iid copies of the mutation process Y, and {(;} to be iid uniform on [0, 1].
Let {U; : j € N} be iid uniform on [0, K] such that (X(“)(O), Z(“)(O)), {WjZ},
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{N{‘j}, {N%}, {Y5d), {Gy), and {U;} are mutually independent.

Consider the location/type/level process (X™ Z™ U) where the loca-
tion process X(™ is defined as in equation (1.3) and the level “process” U
is constant U = (U;) over time.

We will construct the type process Z(™ in the much the same manner as
we constructed Z™ in Section 1.3. Define neutral and potential selective
event counting processes by

t
A
Vi(jn] (t) = ]{ui<uj}N{\j (7\ L]{Xin)(s)legn)(s)}ds> (2.1)
t
7 (1), — N o
Vi o) = Ng (GL]{XE“)(S)_X,‘“)(S)}dS) 2

and, in the notation of Remark 1.3.2, define the type process Z™ by
(Z™, V7, y,1) = F(ZM(0), Y, VWA Ve ¢ 571)

Note that we will have existence and uniqueness of such a Z under the
conditions of Remark 1.3.1.

Observe that, if we define the actual selective event counting processes
by

o0
M)yorey .
Vi () = ) T Tt ol {an<a10(2{M (tpm), 2™ (r)) }
k=1

then these processes satisfy

t
Vi(j“)yfr(t) =Nj (LO‘ (Zgn)(s), zj(n)(s)) 1{X£n)(s)zx§n;(s)}ds> (2.3)

for iid, rate 1 Poisson counting processes N{ independent of other aspects
of the model. In the case without mutation, the type process Z™ satisfies

ZMw =zM0)+ Y J

iz 70

t

(ZV(s=) = ZM(s-)) (VP (s) + VEP<(s))

) v

Comparing equations (1.4) and (1.9) with (2.1) and (2.3) respectively,
we see that, while selective reproduction events occur analogously to those
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in the model of Section 1.3, neutral reproduction events between a pair
of particles occur at twice the rate but only in one direction: the par-
ticle with the lower level replaces the particle with the higher level or,
equivalently, the particle with the higher level “looks down” to copy the
lower-level particle’s type.

The generator for (X™, Z™ ) is given by

A.f(x,z,u) ZB xzu+ZB“fxzu)

+ D (Mucuy + 0(21,))) (2.4)
xiﬁcj (f(x,nj(zlzi),u) — f(x, z,u))

We will write this model as Y, so that, for initial location and type
vectors X, and Z, respectively, we have

YTL(XO) ZO) K) = (X(n)a Z(n)) U)

Note that we have explicitly made K, which determines the distribution of
U, a parameter of the model.

Consider the special case for initial location/type distribution described
in Section 1.3. If we take ’VO ) to be a measure on location/type space

n~'Z x E with marginal location measure 'Vo ( XE) =) cn1z né and
let (Xo,Zo) be some indexing of the points of a Poisson point process with
mean measure Kv((,n) (so that K may once again be interpreted as the particle
density), then (Xo,Zo, U) is an indexing of the points of a Poisson point
process with mean measure v(() ™ x {j0,x}- Moreover, by an argument similar
to the proof of Corollary 1.3.3, the location/level process (X™(t),U) is

stationary in t, having distribution Poisson (ern_% Tlléx X f[o,K])-

2.2 Coupling to the Stepping Stone Moran
Model

In this section we will establish that, for a fixed density K > 0, the models
Y. and Y, have the same empirical particle location/type distribution.
More precisely, we will prove the following.
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Proposition 2.2.1. FizK >0, and let X™, ZW ZM  and U be defined
as in Sections 1.8 and 2.1 so that

(XM, ZM) =Y, (X0, Zo)

and
(X(n)a Z(n)y U) = YR(XO> ZO) K)

Assume the X, are such that the conditions of Remark 1.3.1 hold.
If we define empirical location/type processes

Fe= Z O (™ ©),2™ (1)

J

then we have I" =4 I', as measure-valued processes.
To prove this, we will require the following theorem.

Theorem 2.2.2. Let E, E;, and E, be separable metric spaces, and let
Y1 and 'y, be maps
EXSE xE 25 E

where yq 1s continuous and y2(x,u) = x is the projection map.
Let A C B(E) x B(E) be given. Suppose

e There exists A1 with D(A;) ={h:hovy; € D(A)} such that
A(hovyy) = (Ath) oy,
for allh € ®(Aq);

e There exists A, such that
JA1 h(x,uw)t(du) = A, J h(x,u)mt(du)

for some m e P(E;) and all h € D(Aq).
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Fizv, € P(Ey). LetY be a cadlag solution to the martingale problem
for (Az,v1). Let Z be a cadldg solution to the martingale problem for
(A, u) for some w € P(E) such that vi x t=poy;'.

If Ay satisfies the conditions of [7] Theorem 2.6 and uniqueness
holds for the martingale problem for (Aq,vy X ), then Y =4 y,0v10Z.

Proof. Define the P(E; x E;)-valued process 7t by 7t:(A, B) := lyy(t)eaym(B)
for all A € B(E;) and B € B(E,). Writing f(y) := [ f(y,uw)n(du), we see
that for any f € D(Ay),

t

Jf(Y(t),u)n(du) —J

JA1f(Y(s),u)n(du)ds
0

t
—F(Y0)~ | A (¥(s) ds
0
is an {§}}-martingale by the definition of Y. Therefore, (Y,7) is a solution
to the filtered martingale problem for (A;,vy X 7,72).

Since A; satisfies the conditions of [7] Theorem 2.6, by [7] Theorem 3.2,
there exists a solution (X, (l) to the martingale problem for (A;,vi X 7)
such that X =4Y.

By the definition of Z, for all f € D(A;) we have

f (y1 0 Z(1)) —L Arf (v1 0 Z(s)) ds

t

— foyr(Z(t) — L (A(foyn)) (Z(s)) ds

is an {§*}-martingale and so an {g}" °“)_martingale. It follows that v 0 Z(t)
is a cadlag solution to the martingale problem for (Ay,vy X 7).

Since, by assumption, uniqueness holds for this martingale problem, we
must have (X, 1) =% y;0Z, and so Y =4 y, 0y, 0 Z. O

Proof of Proposition 2.2.1. The conditions of Remark 1.3.1 imply that
there is a unique solution @ € Z* to the system of equations

@;(t) =j + Z L (@s(s—) — D5(5—)) Vorls .0, sy (dS) (2.5)
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where the VL(]“ ) are given by

1240

Z &iju
1=1

for &;; iid random variables, independent of other aspects of the model,
that take values 0 and 1 each with probability 1/2.

Moreover, for each t, we have j — ®;(t) a permutation. Thus, ® starts
out as the identity permutation, and when an (ordered) neutral repro-
ductive event occurs at time t between particles indexed by ®;(t—) and
®;(t—), half the time these indices are swapped (so that @;(t) = @;(t—)
and @;(t) = ®i(t—)), and half the time they are left unchanged.

Now, consider application of Theorem 2.2.2 to the maps

(XM zM u, @) X (X z0 Ue) v (X, Z0)

(where by Xg) we mean the process Xg)(t) = (Xg?(t)(t), Xglz)(t) (t),...) and
so forth). Take the spaces to have metrics based on d(x,y) =) 2, 1{"12%
for the X, Z, and ® components and d(u,v) := > > |“1 il for the U

i=1
components. Take the generators to be

Af(x,z,u,P): ZB xzu¢+ZB“fxzu¢)

. Z }\( X T]U ),u, (I)) (x)nij(z)>u’ (bf)) —f(X U (I)))

2
u}i’lc?
Zl#lj
+ Z G(Zi) Zj) (f(x>nij(z)>u) (b) - f(x> z,u, (b))
i

with 1i5(z) :=mn;(zlzi) and ¢ equal to the permutation ¢ with the unique

26



components having values 1 and j switched;

Ath(x,z,u) ZB (x z,u)—l—ZBj“h(x,z,u)
j

. Z }\( x,M3(2), u) + h(x,n3(z), uy) _h(x,z,u))

2
ug<u;

Xi =XJ'
Zi #Z]'

+ Z O-(Zi)zj) (h(x)nij(z))u) - h(X,Z,u))

X1=Xj
Zi #Zj

where wy; is equal o u with u; and 1 swapped; and A, := An, as defined
in (1.1). Finally, take 7 to be iid uniform on [0, K] over all components.

Let vi =P (X(“)(O),Z(“)(O))_]. Then, (X™,Z™) is a solution to the
martingale problem for (A,,v;). Moreover, (XM, ZM™ U, ®) is a solution
to the martingale problem for (A, pu) where

M:i=V] X TC X diq

for 8;q the probability mass of 1 on the identity permutation id: Z — Z.
Note vi x m=poy; .

To apply Theorem 2.2.2, it remains to show that A; satisfies the con-
ditions of [7] Theorem 2.6 and that uniqueness holds for the martingale
problem for (Ay,vy X 7). With regards to the conditions on A;, by Hy-
pothesis 1.3.1, we have a solution Y to the martingale problem (B*, §,) for
all y implying that B" is a pre-generator. We also have B" closed under
multiplication. It follows that A; is a pre-generator closed under multipli-
cation. We need only establish that A; satisfies a separability hypothesis
[7, Hypothesis 2.4] (which holds, for example, if we assume that E is locally
compact and that B* maps continuous functions with compact support
to continuous functions with compact support) and that ©(A;) separates
points.

With regards to the uniqueness condition, we will not show that it
holds in this paper, but note that for any solution to (Aj,v; X 7), we can
recover—by observing changes to particle levels—a corresponding solution
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to (An, vy x m) for the generator A, of (2.4). Thus, uniqueness for this
latter problem implies uniqueness for the former.
Application of Theorem 2.2.2 gives

(X, 2y =2 (x) zy

However, as ®@ is permutation-valued, we have

as required. O

2.3 Infinite-Density Neutral Model

Now, let us consider an infinite-density version of the ordered model Y,
described in Section 2.1 but without selection (taking o = 0).

Fix some n € N, and as in Sections 1.3 and 2.1, let V((,“) be a mea-
sure on location/type space n'Z x E with marginal location measure
V(()n)(- x E) = ern,%%éx. Let the initial location, types, and levels
(X(™(0), Z™(0),U) be some indexing of the points of a Poisson point pro-
cess with mean measure \/én) X {g+. As in Section 2.1, let {WjZ} be iid simple,
symmetric, rate 1 random walks, let {N{‘]} be iid rate 1 Poisson counting
processes, and let {Yj} be iid copies of the mutation process Y such that
(X(“)(O), ZM(0), U), {WjZ}, {N{‘j}, and {Yji} are mutually independent.

Consider the location/type/level process (X™, Z™ ) where the loca-
tion process X(™ is defined as in equation (1.3) and the level “process” U
is constant. Define neutral event counting processes V(™ as in (2.1), and

let the type process Z™ be given by
(Z™,V,7,v,1) :==T(Z™(0), Y,V 0,0,0)

in the notation of Remark 1.3.2.
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Remark 2.3.1. Note that existence and uniqueness of such a Z™ is a more
serious question here than in the earlier finite-density models. Fortunately,
even though each particle j occupies a site together with an infinite number
of other particles, only a small number (specifically, a Poisson number with
mean U;/n) will have levels lower than j’s at any one time. Thus, the
argument outlined in Remark 1.3.1 applies. It is possible to establish that
the V; have no explosions and that the collection of all (lower level) particles
that might have influenced the value of Z)gn) (T) for any fixed T is finite. The
existence and uniqueness then follow.

In contrast, note that if we had included selection in the form of the
potential selective event counting processes given by (2.2), this argument
would not apply. Since selective events are unordered, every particle would
be subject to infinitely many potential selective type changes in every finite
time interval. In general, there would be no solution Z™

We will consider how selection may be introduced into infinite-density
models in Section 3.2 of the next chapter.

Note that, in the case without mutation, the type process Z™ satisfies
t
270 =270+ X ey | (27152~ 27(s)) @V e

(though the indicator Tgy, ;) is redundant as it already included in the
definition of the Vl()n )’)\).

The generator A, for (X, Z™ ) is the A, of (2.4) but with 0 =0,
giving

Anaf(x,z,u): ZB xz,u)+ZBj“f(x,z,u)
j
+ Z }\]{ui<uq-} (f(x)nj(z|zi))u) - f(x) Z,U-))
Mah

For initial location, type, and level vectors (Xo, Zo, U), we will write

YTLJ\(XO) ZO) U) = (X(n]) z(‘n.]’ U)

The following proposition is immediate from the construction of the
models Y, and Y.
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Proposition 2.3.1. In the neutral case (0 =0), let
(X, Z,U) =Y, (Poisson(v(()n] X fg+))

be the infinite density model of the present section.
For any K > 0, if we take

(X', Z',\U') = Yn(Poisson(Kvén)), K)

a realization of the K-density model of Section 2.1, then we have

d
D_dgzpup = ) Sz
j

U<k

Combining the results of Propositions 2.2.1 and 2.3.1, we have that—in
the absence of selection—the infinite-density, ordered model Y, of the
present section, cut off at level K, has the same distribution, up to particle
indexing, as the K-density, ordered model Y, of Section 2.1 and model Y,,
has the same empirical location/type distribution as the K-density, sym-
metric model Y, of Section 1.3. That is, the infinite-density, ordered model
of the present section simultaneously embeds (symmetric) neutral Moran
stepping stone models of all densities K > 0.

Now, we will turn our attention away from lattice models. In the next
chapter, we will consider an ordered, infinite-density variation of the local-
time interaction model Yy of Section 1.4. It should be noted, however,
that for many of the results we obtain in Chapter 3, analogous results hold
for the model of the present section. The construction, in Section 3.2, of
an infinite-density Brownian model with selection could be carried out for
stepping-stone models, generalizing Y, ) to the selective case. Similarly, the
coupling technique of Section 3.3 can be applied to lattice models and might
be used as an alternative to the generator-based method of Section 2.2. Of
somewhat more interest, the limiting location/type measure obtained in
Section 3.4 has an analogue in the present case and an analogous Poisson
structure result to that of Theorem 3.5.3 will hold.

30



Chapter 3

Infinite-Density Brownian
Model

“Rhythm is the basis of life, not steady forward progress. The
forces of creation, destruction, and preservation have a whirling,
dynamic interaction.”

— Kabbalah (circa 100-1000 A.D.)

3.1 Ordered Interacting Brownian Motions

In this chapter, we study an infinite-density, ordered Brownian motion
model with particle interactions determined by local times.

In Section 1.4, we examined the limit of the (symmetric) Moran stepping
stone model Y., as the site density n increased with the particle density K
held constant. Recall that the particle location random walks converged to
independent Brownian motions and, with the interaction parameter scal-
ings A = Apn and 0 = opn, the interactions between pairs of particles
converged to Poisson counting processes with clocks proportional to the
local times at zero of the distances between the particles. We called the
resulting model, with an appropriately defined type process, model V5.

In this section, we begin with an ordered version Y, of the K-density,
Brownian model Yo. In Section 3.2, we consider how to extend this model
to an infinite density model Y, with selection. In Section 3.3, we show by
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means of an “intermediate” model construction that the K-density, ordered
model Yy may be coupled to the K-density, symmetric model of Section 1.4.

In Sections 3.4 and 3.5, we establish that there is a time-indexed col-
lection of measure-valued random variables v; associated with Y. Condi-
tioned on vy, the points of Y, at time t are Poisson with measure v; x {g+ in
location/type/level space. In essence, the measure v, is the measure-valued
limiting diffusion process for the locations and types of the ordered model,
and—by the coupling results of Section 3.3—it is the measure-valued dif-
fusion limit of the symmetric model Yy as K — oo.

We study the process v, more carefully in the final sections, proving
a martingale characterization in Section 3.6 and establishing a tightness
result—and so showing it almost surely has vaguely continuous paths—in
Section 3.7. Finally, Section 3.8 contains the proof of Theorem 3.6.2, an
involved calculation of the quadratic variations of the martingales studied
in Section 3.6.

Let us begin by constructing an ordered version Y, of the model Y,
of Section 1.4. Fix a particle density K > 0. Let vy, be some measure on
location/type space R x E with marginal measure v,(- x E) equal to {g, and
let the initial locations, types, and levels (X(0), Z(0), U) be some indexing
of the points of a Poisson point process with mean measure vy x {j k.
Let Y be the mutation process with generator B* described in (1.2). Let
{W; :j € N} be iid standard Brownian motions, let {N%,N% 1#£jeN}
be iid, rate 1 Poisson counting processes, let {Yj :j € N,k € Z*} be iid
copies of Y, and let {Gjx : j € N,k € Z*} be iid uniform on [0, 1] such that
(X(O) ,Z(0), U), {W;}, {N{‘j}, {N%}, {Y;i), and {;x} are mutually independent.

Define the location process X by

Xj = XJ(O) + \/§WJ

For each ordered particle pair (i,j) with 1 # j, let L;; := L9(X; — X;) be the
local time at zero of X; — X;j, and define the neutral and potential selective
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event counting process by

A
V% = 1{ui<u,-}N{‘j (%Lij(')>

\ /O .__ N|O o
V5= Nj (ELU('))

In the notation of Remark 1.3.2, define the type process Z by
(Z,V,T,v,1) :=%(Z(0),Y,V\V° ¢ 5 'o)
We will write the above model as Y so that
Yo(Xo, Zo, U) := (X, Z,U)

and we will define the empirical location/type process &€ by
=) 8.2 (3.1)
j

This model has a simple geometric interpretation. We begin with a
Poisson collection of particles uniformly distributed in location/level space
R x [0, K]. (Projected onto the location component, of course, the particles
form a K-density collection occupying the real line.) The particles engage in
independent, horizontal Brownian motions, moving through location space
while their levels remain constant. Neutral events between each unordered
pair of particles occur according to a Poisson counting process driven by the
local time of the horizontal distance between the pair. When such an event
occurs, the particles are necessarily at the same location; the particle with
the higher level “looks down” and copies the type of the lower-level particle.
Selection events occur according to a Poisson counting process driven by an
integral against the local time whose integrand takes into account the types
of the particles. Unlike neutral events, selection events are unordered, so
it is possible for either a lower-level particle to “look up” or a higher-level
particle to “look down” to copy a type. Between interactions, the particle
types are independently subject to mutation.
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3.2 Infinite-Density Model with Selection

Fix K > 0, and consider the model of the last section
(X) Za U) - YO(XO) ZO) U)
for (Xo,Zo,U) ~ Poisson(vy X {jox). For each j € N, define the counting

process
V7= Z \'A
i#
which counts the total number of potential selective events directly affecting
particle j. Observe that

Ve =Ny (@ X Lw(-))
i#j
for {N;’} iid rate one Poisson counting processes independent of other as-
pects of the model. Our present goal is to characterize this time change for
an “arbitrary” particle j as the particle density K increases to infinity.

For these purposes, let us condition on X, having a particle at some
arbitrary location a € R. For convenience, let us take this particle to have
index one, so that Xp; = a. By the properties of Poisson processes, we
have

Z dx, ; ~ Poisson ()
i#1

o
RK = — i
70 Z L1,1 (t)
i#1
This is the time change associated with V. For each « > 0, let us define

o
RIO(( = 20 Z ]{|X0,17X0,1|<0¢}L17] (t)
i1

Fix t > 0. Define

the total contribution to R¥ made by particles whose initial locations are
within o of particle one’s initial location a. Observe that

N
_d
Z 1{lxo,i*XOJ|<0€}5(Xo,i*Xo,1yWin1) - Z 6(01,W1,W0)
i#1 i=1
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where N is Poisson with mean 2K«, (l; is uniform [—«, «], and W, and
W, are standard Brownian motions with N, ﬁi, Wo, and W, mutually
independent. It follows that

- N
o ~ ~
Ry =¢ 20 Z LO(0; + VB(W; — W)
i=1

The following property of local times will be useful here

Lemma 3.2.1. Let X; be a semimartingale with continuous paths and
local time LE(X) at point a. For any o > 0 and any b, the process
0X; + b has local time L3 (0X + b) at point a given by

a—b
L (oX+1b) =0L.° (X)

Proof. By Corollary 3 of Theorem IV.51 of [10], we have

t
L (oX+Db)=|oXi—a+bl—|0Xo—a+b|— O'J sgn(oXs — a + b)dX;
0

t
= o= =22 = o 2| - [ sn (6, - 22 ax,}
- 0
=oL, 7 (X)

giving the result. O
By Lemma 3.2.1, we see that
«/\/20
ERK = 6'KJ Elf'da
—/v/20

where [ is the local time at a of a standard Brownian motion.
The following lemma and its corollary provide the missing detail.

Lemma 3.2.2. Let W, be a standard Brownian motion with Wy=a >
0. Then, the local time |, at zero satisfies

2t a2 a
Bl =4/ e % —2a0 (-
. . ( \/€>
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Proof. Tanaka’s Formula [10] states that
e = |Wt| - |W0| — B¢
where 3¢ is a Brownian motion with 39 = 0. Clearly then

E[t:E|Wt|—(l

2t 2 a
=4/—e 2 —2a0 [ ———
Ve a0 ()

Corollary 3.2.3. For [} the local time at a of a standard Brownian

O
motion, we have
J' Elfda=t

Proof. Note that

M M 2t a2 a
Elfda= ZJ —e 2t —2ad (——) da
JM ¢ 0 ( T Vit

Actually, this result also follows directly from Corollary 2 of Theorem IV.51
of [10], since

EJ (@ da =EW] =t

—00

Since RX 7 R¥ as o — o0, it follows by the corollary that

ER* = 6Kt (3.2)
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Similarly, note that

2
E(RX 492 [ZLO +\/6(W1—W0))]

=2

- 2 3 (01 Vo)
+ (2Ka)? [LO (ﬁ] FVBW, - W )) (3.3)
1 (0 + VB(W, W) )
= 62:(x (E(lh,0)* + 2K E by ¢ ¢)

where

o= 1(1 ]WO—W])
=12 g+ 5= W)

0= 10 (gl + 5o Wil

are local times of dependent standard Brownian motions with starting
points uniformly random on [—oc/ V20, a/ \/26} .

To bound the variance and covariance of these local times, we will need

(3.4)

several results. We begin with a theorem that bounds the second moment
of the local time of a Brownian motion whose starting point is uniformly
distributed on a large set.

Lemma 3.2.4. Let X := Xo+W for Xy uniform on [—M, M| independent
of the standard Brownian motion W. Let L be the local time at zero
of X. Then

T MV m
where v := E([;)? < oo 15 the second moment of the local time at 0 of
a standard Brownian motion.

Proof. Let a > 0. Define 1, := inf{t : W, = a} to be the hitting time of a.
Writing [¢ as the local time at a of W, by the strong Markov property
of W, we have

E([’?)z =E [E [([3)2 | g‘T/\:H < VtE]{Tq<t} =Vt P(|\/1_:Z‘ > a)
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for Z a standard normal random variable.
It follows that

] M
EU_V::———J E(1%)%da
R] Vi IR
v, M/VE
M¢# P(|Z| > a)da
0

Vi
—vVtE|Z
MJ'H

IN

IA

giving the result. O
We will now need the following technical lemma.

Lemma 3.2.5. Let U= [XdY for [X| < C and Y a continuous, square
integrable martingale. For any p > 2, we have

Esup [U [P < b,CP E[Y, Y]tp/2

s<t

where b, = {q‘p (@) }p/z'

Proof. As X is bounded, U is a continuous, square integrable martingale.
Therefore, by Burkholder’s Inequality [10, Theorem IV.54], we have

t p/2
Esup|Us°P < b, E (J X2dl[Y, Y]s)
0

s<t

< b,CPE[Y, Y]?/?
O
Next, we show uniform integrability for a certain sequence of integrals.

Lemma 3.2.6. For 6 >0, let X and Y be continuous, square-integrable
martingales such that E[X,X|{*°, E[Y,Y™®, EX{™®, and EY;"™ are
finite. Define

t t
Z, = nzj ]{Xs€(0,1/n)}d[x]sj Teveeo,1/mndlYls
0 0

Then, we have sup, EZ!™ < co. In particular, the Z,, are uniformly
integrable.
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Proof. Fix n. Let ¢, be defined by

.

—(1—a)x, x <0
n;f_“_a)x 0<x< 5
Pa(x) = {n(x— 1) x+ &, ¢ <x < g
(5=’ 1 1 1
——+(1—-a)(x—7), E2<x<o
1 1
\(1—(1)(7(—;), Iy

Note the following properties of ¢,:
» o € C*(R);
o |da(x)] < Ixf;
o [ (x) < T;
e ®(x) > 0 increases to a limit 2nl (o)%)(x) as a — 0.

Let p =2+ 256. By Lemma 3.2.5,

P

E <b, E[X, X]{ ™

Jt BL(X)dX,

0

Thus, by the Monotone Convergence Theorem, Itd’s formula, and the
Minkowski Inequality, we have

‘ M 1 t n
J nl{XsE(O,]/ﬂ]}d[X]s = lim _J d)a(Xs)d[X]s
0 p a—01|2 o .
t
~ lim cha(xt) — alXe) — j &’ (X.)dXs
a— 0 P

< Xellp + [Xollo + (bp BIX, XI178)"/7

An analogous result holds for Y, so we may conclude by the Holder
Inequality that

1/o\ 148
B2} < (IXllp + [Xolly + (by BIX, X11+) ")

1+8
(el + 1Yollp + (b5 BIY, VIFS) )
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The expression on the right is independent of n. By hypothesis, ||Xo||,,
I Yollp, EIX, X1{*?, and E[Y, Y]{*® are finite, and by Burkholder’s Inequality,
this implies ||X¢||, and ||Y¢||, are finite. Therefore, we have the result. [J

Finally, we are ready to give the following result, bounding the covari-
ance of local times of correlated Brownian motions having uniform starting
points on a large set.

Lemma 3.2.7. Let (X,Y) be a two-dimensional Brownian motion with
Xo and Yy 12d uniform on [—M, M] and quadratic variations [X,X] =
Y, Yl =t and [X,Y] = pt for some p € [-1,1]. Let L and K be the local
times at zero of X and Y respectively. Then,

t  4M?

- 25 < 5 BLK <1

Proof. Fix t. By Corollary 3 of Theorem IV.55 of [10], we have

Lth = lim Zﬂ_

n—oo

where -

Z, =2 LL To.1)(Xe)Tg 1 (Yy)ds dr
By Lemma 3.2.6, the Z,, are uniformly integrable, so by Tonelli’s theorem,
we have

E Lth = lim EZTL

n—o0

= lim ”tnzp (Xs € (0,1/m),Y, € (0,1/n)) ds dr

trt dx x dy 1 1
= 1 dsd nMP(0<Z, < -, 0<2Z, < —
TLlHIEIOJ'oJo ° T”[ M, M]2 aM2 ( B )

for (Z1,Z;)' ~N ((x,y)’, £) where £ = (p(:/\r) p(sr/\r)).
Note that

s

n2P(Z, € (0,1/n),Z> € (0,1/n)) 7 & (( %)
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for ¢(-,X) the density of N(0, L), so by the Monotone Convergence Theo-

rem, we have

ot dx x dy
EL.K :” ds dr” —¢ ((x,y)', 1)
o 0Jo [—M,M]2 4M?

However, by Markov’s Theorem, for (U, V)’ ~ N(0, L), we have

H dx x dy & (), £) < P(U+ V| > 2M)
R2\[-M,M]2

E(U+ V)2
< = T
- 4M2
t
=M
for all s,r < t. Therefore, we have
1—L<” dx x dy & ((x,y)", %) <1
Mz —_ [7M)M]2 ) ) —

and the result follows.

O

Now, applying Lemmas 3.2.4 and 3.2.7 to the task at hand, we see that

for the [; and [, of (3.4), we have

2 ot

0 < B(hy)? < T4/ =

(0.4 T
and ot? 20 ot?
t t t
202 (1 B ?) SBhes o0

Therefore, by (3.3), we have
~2.21,2 26t K\2 o 2,212 | 9= t
t?K? [ 1 — = ) < B(R¥)? < 62t2K? + 26%Kvey [ —
o? 710
and so, letting &« — oo, we have
t
o°t’K? < E(R¥)? < 67t°K* + 262Kvﬂ/@
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If we take some per-particle selection rate function and upper bound
0 < 0p(+,-) < 0p and let 0:= 0p/K and G := Gy/K, then
t
32t < B(R¥)? < 522 +26§% — — &

70 K—o00

Together with (3.2), this implies that

RE 1, Got
K—oo
That is, the per-particle potential selective event processes \7j° are, in the
infinite-density limit, iid Poisson counting processes with constant rate .

This motivates the following construction of an infinite-density, ordered
Brownian motion model with per-particle, constant-rate Poisson potential
selective event counting processes.

As in the previous section, let vy, be some measure on location/type
space R x E with marginal measure vo(- X E) equal to {g, and let the initial
locations, types, and levels (X(0), Z(0), U) be some indexing of the points
of a Poisson point process with mean measure vy x fg+. Let {(Wj:j € N}
be iid standard Brownian motions, let {N{‘j :1#j €N} and {Nj" :j € N} be
iid, rate 1 Poisson counting processes, let {Y;i:j € N,k € Z"} be iid copies
of the mutation process Y, and let {Gj,njx 1 j € N,k € Z*} be iid uniform
on [0, 1] such that (X(O),Z(O),U), {Wj}, {N{‘j}, {N;’}, {Yd, {GxJ, and ()
are mutually independent.

Define the location process X by

Xj = X)(O) + \/§W)

let Ly = L9(X; — X;) be the local time at zero of X; — X;, and define the
per-pair neutral event counting process by

A
V(1) = Tucu ) NY <%Lij(t))

For each j, define the per-particle potential selective event counting process
by



and define the counting process

i#
which counts all neutral and potential selective reproduction events directly
affecting particle j. For k € N, let Tj; be the kth jump time of Vj, and define

Yk = Z iAVf}(Tjk)
i#
Lk = Z AV{;(T}k)
i#
Almost surely, the summations ;. and x have at most one non-zero term.
If T;¢ corresponds to a neutral event (ix = 1), then yjx gives the index of
the particle with which particle j interacts. (In the case that Tj; represents
a potential selective event, we have (;, = yj =0.)
With the conventions ;0 := 0, vj0 :=j, 4o := 1, and Z;(0—) := Z;(0),
we define the type process Z to be the unique solution of the system of
equations

Z;(t) = Yiic (& (4xZy,. (te—) + (1 — i) Wik, Z (T, Yk, i) » t — Tix)
Tk <t < Tj x4t
where ¢ is defined as in (1.7) and 1p;x are E-valued solutions to the equations
Wi = (&, X5 (Tix—), M) (3.5)

where 1 is some (deterministic) measurable function and & is the empirical
location/type/level process given by

Eei= ) 8(x(0.2;00) (3.6)
j

Remark 8.2.1. In the neutral case (0 = 0), the considerations of Re-
mark 2.3.1 are relevant. In fact, for the initial distribution described here,
the techniques used in the proofs of Section 3.3 may be used to establish
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existence and uniqueness of Z, and the formulation above is equivalent to
taking
(Z) v) T) Y) l') = S(Z(O)) Y) v}\) 0) 0) O)

in the notation of Remark 1.3.2.

Remark 3.2.2. As in Remark 1.3.2, we will introduce a special notation
for the type-definition procedure used above. If we write

(Z) E,,V, T,Y, l,ll)) = CsI(ZO)x)u')y)v}\)‘_)o-) C,ﬂ, 6-_1 0-)

we mean to indicate that we are defining v by
vii=) V5
i#
defining Tjx to be the ordered jump times of v;; defining 'y and 1 by
ij = Z 1A\)i\] (Tjk)
i#

ij = Z AVi\] (’Tjk)
i#

adopting the conventions Tj0 := 0, vj0 :=J, o = 1, and z;(0—) = z;(0);
and finally defining z, &, and 1V as the unique solution to
zi(t) = Y« (d) (ijly,-k(’fjk—) + (1T — 45k, Z (=), ik, Cjk) yt— Tjk) y

Tk < t < T

with
lbik = Ib((("rjk*’ X (Tjk_) y T]jk)
and

L= Szt
j

In particular, the above formulation could have been written

(Z) E) v) T) Y? l’)l'l)) = ‘II(Z(O)’ X, u) Y’ v)\? VG’ C) T]’ 6-7] o-) (3'7)
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We have not specified the form of the function 1, but the implication is
that 1 uses the random input n;, to pick a type from the type distribution
of particles “at” particle j’s present location X;(Tjc). Of course, almost
surely, there are no particles “at” X;(tjx) besides j itself, but there are
ways of making this notion precise, although we will not discuss it in this
version of the paper.

We will write the above model as Y, so that

YOO(XO) ZO) U) = (X> Z) u)

The geometric interpretation of Y, is similar to that of Y,. We begin
with a Poisson collection of particles uniformly distributed in location-
level space R x R". Projected onto the location component, the particles
may be viewed as an infinite-density collection occupying the real line.
Over time, the particles perform independent, horizontal Brownian motions
in the location-level space—the particles change their locations, but their
levels do not change.

Each particle is assigned an initial type in the type space E: the distri-
bution of types may depend on the particles’ locations but are independent
of their levels. Neutral events occur analogously to those in model Y. Each
particle looks down to copy the types of lower-level particles according to
Poisson counting processes driven by local times.

Each particle j experiences potential selective events according to a
Poisson counting process with constant rate 6. When such an event oc-
curs, a random particle type is chosen as some unspecified, deterministic
function \{ of the empirical location/type/level measure, the location of
particle j, and an independent random input 1. Intuitively, we imagine
that this type has been picked at random from the collection of all parti-
cles arbitrarily close to j in location space. According to a coin flip biased
by the selective advantage the new type has over j’s present type, j either
adopts the new type or keeps its present type. Between interactions, the
particles mutate independently.
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3.3 Coupling to the Brownian Moran Model

The particle system Y, of Section 3.1 describes a K-density collection of
Brownian motions that interact locally according to an ordering determined
by the particles’ levels. In this section, we will show that

EK :d EK

are equal in distribution as measure-valued processes, where £¥ is the em-
pirical location/type measure-valued process for model Yo of Section 1.4
defined in (1.23) and &X is the empirical location/type measure-valued pro-
cess for model Y defined in (3.1).

We will show this by means of an intermediate ordered model with
a level structure more complex than that of Y,. In addition, a modified
version of this intermediate model will allow us to prove some important
properties of the infinite-density model Y.

To construct the intermediate model, fix K > 0, and let the following
be independent:

e (X(0),Z(0)) some indexing of the points of a Poisson point process
with mean measure Kvy;

e {l;:j € N} iid uniform on [0, K];
e {W;:j € N} iid standard Brownian motions;

° {Nf‘i,j} :1#j € N} and {N% :1#j € N} iid rate one Poisson counting

processes;

o {m;ijk 1 # j,k € N} independent uniformly random permutations
{i,3} & {i,3);
e {Y;i:j € Nk € Z"} iid copies of Y;
e {Cix:j € Nk € Z"} iid uniform on [0, 1].
Note that we have indexed N?i,j} and 75 by the unordered particle

pairs {i # j}.
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Define the particle locations

Xj = XJ(O) + \/éw)

For each unordered pair {i # j}, let

L{i,j} = LS(XL — )~()) = Lg()z) — XL)

be the local time at zero of X; — )2)- and let {T{}i‘,j},k : k € N} be the ordered

jump times of the counting process V{{j} defined by
A
AN
Vi) = Niij) (ghm)

For each ordered particle pair (i,j) with i # j, let

\ /0 .__ N|O o
vij = Nij (%L{id})

The following theorem completes the specification of the intermediate
model by defining [0, K]-valued level processes ﬂj and N-valued permutation
processes ®;j.

Theorem 3.3.1. Define the filtrations
Fe =0 {Td0 Mk Thpe St i#j ke N}
=% Voll;:jeN

For each j, we may almost surely strictly order the set of ordered pairs
(M0 Mg 1 #5,k € N}

by the order of their first component. Let {(Tj7:k, T x) k. be this ordering
(such that T} <T) <...). Then,
1. There ezist {§._}-adapted, [0, K]-valued, left-continuous, jump pro-
cesses ﬂj satisfying
. u;, 0<t< T
uj(t)_{”] A Ay ]7]?\
uﬂjvl(j](ijl), T,l < t S T),l—f—]’ 1 € N.

)
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and {§._}-adapted, N-valued, left-continuous, jump processes @;
satisfying
Ua, 0 (t) = ;
for all t > 0. (Note that this implies j — @;(t) is almost surely a
bijection N & N for all t € Q" and so simultaneously for all t €
R*.)
2. For each fized t > 0, conditioned on

S

S
A
o {L 1{L"li(r)<L"l]~ (r)}dv{i,j}(r)) L

the {U;(t) : j € N} are 4d uniformly distributed on [0,K]. This
implies that, conditioned on o {T{}‘ i#£j,ke N} , the indicators

A
L mstyenpdVan(r),0 < s < t}

Lk

1,- N
{06 (T 500) <05 (T ) §
are ud cown flips.
We will prove Theorem 3.3.1 by means of the following lemma.

Lemma 3.3.2. Let T C (0,00) be a countable set of times, and let
0: T — P1(N) where P1(N) s the collection of nonempty, finite sub-
sets of N. Let ng := |oy| for all t € 1. For each j € N, define
T:={t€T1:j € 0o}. For eachj €N and T>0, define L: [0,T] — P (N)
by

S ={uli:ImeN{ti <ty < - <t} CTNILT)

such that i € o-t1 ,j € O-tm, O-tL N O-tl-H 7£ m}

Note that ZjT(t) 15 left-continuous and monotone decreasing in t.

Let {m; : t € 1} be a sequence of independent, uniformly random
permutations T (w): o, < o; and let {U; : j € N} be ud, uniformly
distributed on [0,K], and independent of the {m}. Define the filtrations

Si=o{ns:seTn[0,t]}
Se=%Volly:jeN
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for all t € RT.

Under the hypothesis that the sets 7; N [0, T] and ZjT(O) are finite
for all j € N and T > 0, we may order each T; as T; = {tj;; < tj2 <
...}, and there ezist {§._}-adapted, [0, K]-valued, left-continuous, jump
processes flj satisfying

. U; 0<t<ty;
U](t) — ~J’ — = 4,1
U (1), ti<t<tua, leN

il

and {§. }-adapted, N-valued, left-continuous, jump processes ®; satis-
fying )
Ue, ) (t) = U

for all t > 0. In addition, the flj and ®; may be taken to be determin-
istic (measurable) functions of T, o, m, and U;.

Furthermore, for each t € T, let p; be the random ranks of {ﬂj(t) :
j € o} such that pe(w): o — {1,...,n). Then, for all T> 0, {U;(T)}en
conditioned on of{p; : t € TN[0,T)} are wd, uniformly distributed
on [0,K]. In particular, {p; : t € T} are mutually independent, each
uniformly random over the permutations o, < {1,2,...,n}.

Proof. Fix T> 0, o’ € B¢(N), and finite 7/ C TN [0, T).
Define
0, := 0’ U (Uierr %)

and
5 (1) = Ujeo, I (1)

Note that o, is finite, so ZCT,*(O) is finite with ZCT,*(t) monotone decreasing
in t. Write £, =X} .
Let us define a set of times

T, ={tetn[0,T):oeNZ(t) £ D} ={tetnN[0,T): 0u C L, (t)}

Note that
T C Ujesx, (o) (15N [0, T])
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and thus T, is finite. Therefore, we may order it as
T*:{‘h <t2<"'<tm}

Define t,,,.1 =T.
Now, working inductively for L =1,..., m+ 1, we will define

e [0, K]-valued random variables l':lj(tl) for all j € Z,(t1); and

e Y, (t1)-valued random variables @j(t;) for all j € X'(t;) where X'(t;) :=
i :3)" € Li(t), Uy (t) = U} € Z,(0)

satisfying the inductive hypothesis:
° ﬂ(pj(tL)(tl) =U; for all j € Z'(ty);

flj (t) are iid uniformly distributed on [0, K] and @n,—measurable;

®;(t,) are §,_-measurable;

the random ranks p,, of {ﬂj(tk) je oy C Z*(tk)} are iid uniformly
random permutations oy < {1,...,n Jforall k <1—1;

{ﬂj(tl) 1j € Z*(tl)} and {py, : k=1,...,1— 1} are mutually indepen-
dent.

Initially, define ﬂj(t]) = U; and ®j(ty) :=j for all j € L,(ty). Then,
the inductive hypothesis is satisfied for 1 = 1.
Suppose the hypothesis is satisfied for 1. For all j € X,(t,,1), define

W (tyy) =

~

~ Ur, y(t), § € Zultin) Noy;
U (t), j € Li(tipr) \ o,

and for all j € L'(ty,1) define
;(t1), Q;(t1) & oy,

50



Note we have @;(t;11) € L, (t11) and th,]. (o) (tpr) = Uye for, if @5(ty) € oy,
then

Oj5(t111) = Oj(t1) € Lo(t) \ 0, C Eiltisr) \ 0y
implying

Ut ) (tit1) = Uas ) (1) = U;

while if ®;(t;) € oy, then j € Z'(ti41) implies we have j’' € Z,(t141) with
ﬂj’ (tiy1) =U;. As ﬂ@j(m(tl) = U;, the uniqueness of the U; implies j’ € oy,
with 7 (§') = @;(t;). But then,

D;(t1) =7, (O5(t1)) =’ € Li(tipr) N oy
That, in turn, implies
U, (e, (1) = ﬂml()”)(tl) = Uo, ) (t) = ;

Noting that p;, is measurable with respect to G{ﬂj(tl) 1) € oy, we
have

1

B H hj(ﬂj(t1+]))Hgk(ptk)

JEL(tr41) k=1

1

=E H h;(Us(t)) H hj(ﬁnq(i)(tl)) Hgk(ptk)

jeXu(tip)\oy,  jeXi(tigr)Noy k=1

11 1 [ i
=E|[Jolee)|E| ] Nw)|E {gl(pn) 11 m(ﬂﬂq(j)(tl))}
| k= J

1 €S (tie1)\ oty JEL«(ti11)Noy

[ 1-1
| k= i

1 | J€X (tir1)\oyy

B H h;(Us(t))

JEX(ty41 )ﬂo‘tL

where the second equality follows from the inductive hypothesis—giving
the independence of ofp;, :k=1,...,1—1}, O-{tlj(tl) e Lo(ty) \ th},
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and 0‘{ ﬂj(tl) 1) € Lty N O'tL} V o{m }—and the third equality follows
from the fact that 7, is a uniformly random permutation independent
of o{U;(t)) :j € Z*(t1+1~)}-

The fact that the U;(t;) for j € L,(t;) are iid, uniformly distributed
on [0, K] then gives us the inductive hypothesis for 1+ 1.

Therefore, the inductive hypothesis holds for m + 1. In particular,
{ﬂj(T) :j€eo C Z*(T)} and {p; : t € 7" C T,} are mutually indepen-
dent with U;(T) uniformly distributed on [0, K] and p; uniformly random
permutations of {1,...,n}.

Finally, note that the definitions of ﬂj(t) and @j;(t), for any j € N
and t € T, that arise by the inductive process described above are unique,
irrespective of the initial choice of T, ¢’, and 1’. Moreover, these random
variables can be defined for all such j and t by taking T = t, o’ = {j}, and
1’ = {t}. Thus, we can uniquely define processes flj and @; for all j € N by

~ Uj(t1), 0<t<ty
u)‘(t) = ~
Uj(t), ti<t<tiy, LeN

and analogously

O (1) = Q;(t1), 0<t<ty
’ Oj(t), t<t<ty, LEN

These processes are easily seen to satisfy the conditions of the lemma. [

Proof of Theorem 3.3.1. We may take our probability space to be a prod-
uct space (Q; x O, F1 X §2,P1 x P2) such that (X(0),Z(0)), W;, N%‘i)j},
N{’j, Yjx, and (5 are §1 x )r-measurable while U; and 7t 5 are (g X §>-
measurable.

Define 1 := {T{}{)j},k 1#j,k € N}, and let ny, T;, and X! be defined
as in Lemma 3.3.2. Almost surely P;, the Té,j},k are all distinct, and we
may unambiguously define o: T — B;(N) by O-(T{)i\,j},k) = {i,j}. Moreover,
we will establish in Lemma 3.3.4 that, almost surely P;, we have t; N [0, T]
and ZjT(O) finite for all j € N and T > 0. For all such w; € Q;, we may
apply Lemma 3.3.2 to produce processes U;(w) and ®;(w1) defined on the

probability space (Q», 52, P2).
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As the flj and @; are measurable functions of random variables measur-
able with respect to the product space, the flj and @j; are actually random
variables on this larger space. They are easily seen to satisfy the statement
of Theorem 3.3.1. O

The proof of Theorem 3.3.1 relies on the following two lemmas which
establish that, almost surely, 7; N [0, T] and ZjT(O) are finite for all j € N
and T > 0.

Lemma 3.3.3. Let ' := {(t,x) € R* xR : Jj € N, X;(t) = x} be the
graph of the Brownian paths, and let Ty := n(I' N ([O,t] x R)) (with
m: R" x R — R the projection map) be the set of points covered by the
paths up to time t. Then, for any fized t > 0, we have

Pm¢gT iomeN =PmgT io.me-N) =1

That 1s, almost surely, infinitely many positive and negative integers
are not hit by any of the Brownian motions up to time t.

Proof. Let X [0, t] {X (s) : 0 < s < t} be the interval covered by )Zj up
to time t. For each m € Z, define

N = Z ]{mef@- [0,t]}
j

Note that
(X;(0), W;) ~ Poisson (Kl x 20)

for 20 the law of Wy, so as we have
Nm = ; ]{(5(]- (0),Wj)e{ (x;w)mefx+vows:0<s<t}}}
it follows that N, is Poisson with mean
(Klg x 20) <{(x,w) tme {x+vVow,:0<s < t}})
:KJ'P(mex—l—\/éws:Ogsgt) dx

2

=2K4/ —
ot
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Noting that the ergodicity of the original system over location space R
ensures the ergodicity of the stationary sequence {N,, : m € Z}, the ergodic
theorem implies

M
1 B 2
M Z_] im0 Moo P(N; =0) =e¢ *V=r >0

In particular, this implies
P(Nh,=01i0.meN) =1
and similarly P(N,, =0 i.0.m € —N) =1, giving the result. O

Lemma 3.3.4. Almost surely, we have 7;N[0, T] and ZjT(O) finite for all
je€Nand T> 0.

Remark 3.3.1. T is the set of neutral lookdowns in which j participates,
either as parent or child. ZjT(O) is the influence set of j at time T. In the
neutral case, it is the set of all particles whose type might have “influenced”
j’s type at times prior to T (through a chain of reproduction events). In
particular, if we take a realization of the process and change the initial
type of a single particle i without changing the genealogy, a particle j’s
type immediately before time T may only change if i € ZjT(O)—if iisin j’s
influence set.

Thus, this lemma merely states that, up to a fixed time T > 0, every
particle j has experienced only finitely many neutral reproduction events
and has been influenced (through chains of neutral events) by the types of
only a finite number of particles.

Proof. Let the notation be as in the previous lemma. As [y is a Poisson
point process on R, we have |IhN[my, m,]| < oo for all my; < m, € Z almost
surely.

Fixj € Nand T € N. Almost surely, there exists some (random) M € N
such that )~(]~(O) € (—M, M). By the previous lemma, there almost surely
exists some random integer M; < —M such that M; ¢ I1. Similarly, there
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almost surely exists some random integer M, > M such that M; ¢ I+.
Therefore,

Z1(0) € {i: X0, 1] € My, Ma]} = {i: X(0) € [My, My}

and |ZT( ) < Ton [My, M]| < co almost surely.
Also, as V{1 ,\(T) =0 for all i ¢ 2] (0), we have

ik
A
G0, TI= > N{lg}(zel_{”}(T))

1ezT(0)
i#i
Since L;;(T) < oo for all i # j almost surely and as the sum is over an
almost surely finite set, it follows that |t; N [0, T]| < co almost surely.

As there are countably many particles, we have |ZT( )| and |t; N [0, T]|
finite for all j at all integral time points T almost surely. Since these car-
dinalities are monotone increasing in T, they are finite for all T > 0 as
well. [

Having completed the specification of the intermediate model, we may
now turn to the task of coupling the ordered model Y of Section 3.1 to
the symmetric model Y,. To do this, we will use the intermediate model to
construct two new particle models. The first, a symmetric model, will be
“constructed” by essentially ignoring the level structure of the intermediate
model. The second, an ordered model, will be constructed by ignoring the
indexing of the intermediate model and taking the “particles” to be defined
by the level structure U= (ﬂj)j. That is, a “particle” in our ordered model
will have a fixed level u, and its location and type at any time t will be
given by the location and type of whichever real, indexed particle in the
intermediate model happens to have level u at time t.

To construct the symmetric model, we define jump processes \73 by

t
7\ . A
Vi(t) == L Vet o)<ty s34 Vi (s)

By Theorem 3.3.1, conditioned on all T{ Sk the ]{u (TA )<ty (T )} aTe
{i,i},k {i,i},k
iid fair coin flips. Therefore, we have " "
~ A
A _d A
vij - Nij (@L{id}) (3-8)
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for iid, rate one Poisson counting processes Ni‘]
Let us define the type process Z in the notation of Remark 1.3.2 by

(Z,V,%,¥,1) :=%(Z(0),Y,VA V{5 o)

A unique solution 7 exists: this can be established in much the same way
we established the existence of ® and Ul. Moreover, by (3.8), we have

(X,Z) =2 Yo(X(0),Z(0))

(where we have taken A = Ay, 0 = 0y, and & = Gp).
To construct the ordered model, define the process

X;(t) := X 1) ()

Noting that this process is continuous, we may write

t
X;(t) =X;(0)+v0 ) J T(@;(5)=51 dW;i(s)
j’eN 0
and so X; are continuous martingales satisfying

t
[Xi, Xl = 0 ZJ Lo (s)=i1 1oy (s)=511ds

j’eN 0
= 0tliyp

Therefore, by Lévy’s characterization, we have
X; =4 X;(0) + Vow,
Define counting processes V{} by
t
Vi) = Tueuyy ) J Ty (s)=irt Vs (5121 AV 1y (8)
i/j'en0
and counting processes \7{]-’ P by
t
oDy . _
V()= ) J Lo (s)=i Tjw; (s)=513dVir 0 (5)
irj'en 0
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~

Writing )'Zi,,j: = Xy — X; and Xj; := X; — Xj, by the Meyer-Tanaka formula,
we have for i’ £ j’ that
~ ~ t ~ ~
|Xil)jl (t)| = |Xil))'l (O)| + J sgn(Xi/,j/ (s—))dXi/,j/ (S) + L{i',j’}(t)
0

However, for i # j, we have

Xy ()] — Xy (0)] = |~(I)i(t),(D]-(t](t)| —[Xi5(0)]

i/j'eNO
t ~ ~
= J L@, (s)=t} 1{@;(s)=5') 580(Xir 5 (5—)) dXis 5 ()
irj/en?0

Jt sgn(Xy(s—))dXy(s)

t
= Z J ]{q,i(s)zu}1{q,].(s)=j,}sgn(Xi,,j,(s—))dXi,)j,(s)

i’ j’eN

Therefore, we have
t
Xy (1) = X5 (0)] = | sgnXy(s-)aXys)
t
+ ) J Ly (s)=i1 1 {@; (s)=51dLir 11 (8)
i/j'eN?0

and, again by the Meyer-Tanaka formula, it follows that the local time at
zero of X; — X is given by

t
Li(t) =L{(Xi = X;) = ) J H@is)=iy o ()53l 31y (8)

i"j’envo
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Now, for U; < U;, we have

A t A
— 5Ly = > J Lo (s)=i o (551 (va’,j’} - EL{UJ’}) (s)

i’,j'eN

VA(t)

v

a martingale. In fact, it is a martingale with respect to

V{‘]- Lij
§i " Vs

(%Lﬁ) (3.9)

for iid, rate one Poisson counting processes N{‘] Similarly,

and so

A __d pnA
Vij = Ni'

)

70,0 _d X o
V™ =9 Nj <%Lij> (3.10)

Define the type process Z by

Lemma 3.3.5. If we let

(Z',V,1,v,1) = F(Z(0),Y,V}V°® ¢ 5 '0)
then we have

(X,Z,U) =% (X, Z",U) =2 Y,(X(0),Z(0),U)

Proof. Observe that the neutral interactions play identical roles with re-
spect to the processes Z and Z': when V{; jumps, Z; and Zj' are “set” to
Z; and Z! respectively.

Similarly, for selective events, when \_/g’q’ jumps, the types Z; and Zj’
are potentially “set” to Z; and Z! respectively.

Since the genealogical structures are identical, it follows by the strong
Markov property of the Yj (with respect to reproduction event times) that

(X,Z,U) =* (X,Z',U)
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Equations (3.9) and (3.10) imply
(X) ZI) U) =4 YO(X(O) ’ Z(O)) U)
giving the result. O

This is sufficient to establish the following proposition.

Proposition 3.3.6. We have
EK —d &K
for EX defined in (1.23) and & defined in (3.6).

Proof. By our derivation of the symmetric model (X,Z), we see that we
have

(X,Z) = Yo (Poisson(Kvy)) (3.11)

which has empirical location/type measure K
Similarly, by the previous lemma, we have

(X,Z,U) = Yo(Poisson(vy x Liox)) (3.12)

By the intermediate model coupling, the symmetric model (X,Z, )
and the ordered model (X,Z,U) models have the same empirical loca-
tion/type/level (and, so in particular, location/type) process distribution,
and the result follows. 0J

We now wish to prove a corollary of Theorem 3.3.1 that will prove useful
in later sections. To do this, we must construct a “hybrid” model. From
level K down, it will be similar to the intermediate model constructed in
this section (but with a different selective event structure). From level K
up, particles will act much as in the ordered model Y., of Section 3.2.
For the purposes of neutral events, they will “look down” at lower-level
particles (both above and below level K) and copy their types. To simplify
notation, we will index the (intermediate model) particles below level K
by the natural numbers N and the (ordered model) particles above level K
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by an isomorphic copy N’ = N of the natural numbers disjoint from them
(N'NN = (). That is, we will index particles by the disjoint union Ny N’.

For a fixed K > 0, let the intermediate model be defined as above. Let
the following be independent of the components of the intermediate model

and each other

e {(X;(0),Z;(0),;) : j € N’} (some indexing of the points of) a Poisson
point process on R x E x (K, co) with mean measure vy x £k co);

e {W;:j € N'} iid standard BMs;
° {N{‘j :1€ Ny N, j € N'} iid rate one Poisson counting processes;
° {Nf :j € Nw N’} iid rate one Poisson counting processes;
e {Yi:je N ke Z"}iid copies of Y;
o {(x:j € N,k € Z"} iid uniform on [0, 1];
e Njx:j € NWN' k € Z*}iid uniform on [0, 1].
For j € N', let us define
X; == X;(0) + VoW,

and for i € NN’ and j € N’ with 1 # j, let us define L;; := L%(X; — X;) and
A
VL}; = 1{U1<U5}N€\j <%LU>

Finally, take the hybrid model type process Z = (2) :j e Ny N) to be
given, in the notation of Remark 3.2.2 by

(2) /é) V) %’ ?,?,{I\)) = S’I(Z(O))X) u’ Y)V)\) V)\’ Vc) C)n? 671 G)

where the indices 1 and j are taken over N W N’; where X is given by

X, jeN
R
Xj, jeN.
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where V? is given by

V}\

1)

LieN
V=S V) ieNuN,jeN,;

0, ieN,jeN

for V" as defined above; and where V° = (V‘T j e NWN) for

V(1) = Ng(5t)

j
Take the ordered type process Z = (Z; :j € NwN’) to be given by
Zo,o(-), JEN
Z; = :
2]', ) € N,
This construction gives the following result.

Corollary 3.3.7. Let & be the empirical location /type/level process as-
sociated with the infinite-density model Yo (Poisson(vy x {g+)). Then,
we have the following decomposition

d
=1 Sz T D dx.zu

jeEN jeN!
G.S
> %2000 T D B
jEN jEN!

in the notation of the present section.

Proof. The above construction of the hybrid model gives the first equal-
ity in law. The almost sure equality follows by the intermediate model
coupling. O

We will see some applications of this result in the following section.
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3.4 Measure-Valued Diffusion Limit

Again, let us consider the model Y, of Section 3.2. Let (X, Zo, U) be
Poisson(vy X lr+), let (X, Z,U) = Y (Xo,Zo, U), and let & be the loca-
tion/type/level empirical process given by

&= Z 5(x]-(t),Z]~(t),Ui)
j

We would like to characterize the location/type distribution of particles in
this infinite-density model.
To be more precise, for each K > 0, we may define

K._
Uy = Z 8 (x;(),2; (1))

U;<K

so that we may write, for any location/type test function h: R x E — R
the sum
(U hy =Y h(X(t),Z(t)
U;<K
If h has compact support in location space, so that there exists o > 0 with
h(y,-) = 0 for |y| > «, then the summation is almost surely over a finite
number of terms.

Now, the expressions %<u‘t<,h> characterize the average location/type
distribution over all particles up to level K. We would like to study these
expressions in the limit as K — oo.

Define the filtration

K ._
S =0 {E|RxEX(Km)(T), Zuj« d(x;(1),z;(m), T < t}

That is, the filtration F€ is generated by the locations, types, and levels
of the particles above level K but only the locations and types (without
regard to specific level) of the particles below level K. Define the filtration
§%° = NSt

We will assume the selection function \{ of (3.5) satisfies the following
condition.
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Hypothesis 3.4.1. Let 1 be such that for all K > 0, we have

ﬂ)((Z] 6(Xj’z"’u")> ’ Xo,T]) - ll)((ZuiSK O(xs z5.,) T ZU—]’>K 6(Xiyzi>11'i))’xo’n>
forallx € R®, z € E®,ue (R")*®, i € [0,K]®, xo € R, and 1 € [0, 1].

We will require two lemmas, the first a version of the Martingale Back-
wards Convergence Theorem and the second a consequence of the coupling
of the previous section.

Lemma 3.4.2. If E|X]? < oo for some p > 1, then

lim B [X | §{] =B X | §]

K—o0

where the limit 1s almost sure and in L.

Proof. For p = 1, this is Theorem 4.6.3 of [4]. For p > 1, let Xy := E[X|F¥],
and note [Xx[P =% [X, P by application of the theorem for the case p = 1.
However, we have

Xkl =|E [X| §]|" <E[XP | 5]

and the right-hand side are uniformly integrable over all K by [4, Theo-
rem 4.5.1]. Therefore, Xg £, Xoo- O

Lemma 3.4.3. For t > 0 and K > 0, we have the conditional equality
n law

K| _ K
£ [Zujgk 6(Xj(t),Z]’(t),Uj) ‘ &c] =£ [Zujgk 5(x].(t),z].(t),ﬂ].) ‘ &]

where ﬁj are 1d uniform on [0,K] and independent of
o{(X;(r), Zj(r),W;) :j e N,r < t}

Remark 3.4.1. The interpretation of this lemma is that, for particles below
level K, the past history of the empirical location/type process as embodied
in the filtration §* provides no information about the current level values
of the empirical location/type/level process.
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This result is a subtle one. The filtration F¥ clearly reveals some in-
formation about the levels of particles below level K. For example, in the
neutral case, we may observe two particles with dissimilar types to interact
at location x at time r < t. One particle changes its type to the other’s,
and we may then conclude that, immediately prior to time r, the particle
whose type now prevails must have had the lower of the two levels. How-
ever, the two products of this interaction are indistinguishable with respect
to location and type. Thus, we cannot now determine, as of time r, which
of the two interaction products has this lower level. No interaction prior
to time t can provide information about the levels at time t.

Proof of Lemma 3.4.3. We use the notation of Corollary 3.3.7. Define
6’: = O'{Xj(O),Zj(O),Wj,N;r, ij, Cjk)njk : ) eNuw Nl,k € Z}
Vo{l,Ny:ie NoN,je N, i#j}
.2 . . A
v G{N{LJ}’ {U. ( {iih l)<ﬂ (T{}l)‘ 1)} .1 #) © N’l © {ll . Tﬁ’ﬂ’V = t}}

Observe that for any selective event at time T affecting a particle at loca-
tion X with level below K, there is almost surely a unique j € N such that
X; = X and a unique j’ € N such that >”<)-, = X. Thus, by Corollary 3.3.7
and Hypothesis 3.4.1, we have

w((ZiEN&JN’ 5(Xi,zi,ui)> y X5 (T),n)
_xp((ZleN %z.0) T Lien O Xl,zi,ui)),ij/(’r),n>

It follows that (Xj,Zj)jeN is ®.-adapted and F C &.. However, the
{U;(t)}jen conditioned on &, are iid uniform on [0,K]. Thus, iterating the
expectation, we have

So(E ) ]
X,

jeEN
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for H the probability measure of the vector (ﬂ] , ﬁz, ced)e
By Corollary 3.3.7,

DSz w0 = D g,z 0.

JEN jEN
and the result follows. O

These lemmas give the following theorem, which characterizes the limit
of the average location/type distribution % <utK, h> as K — oo.

Theorem 3.4.4. Let h € B(Rx E) be measurable and bounded and have
compact support in its first variable. Then

% (ut, ) =B [(ui, ) | 8] — B [(u,h) [ §7]

where the limat 1s almost sure and in L, for all p > 1. We write the
(integrable) limit as (u, h) :=1lim ¢ (uf h).

Proof. By Lemma 3.4.3, it follows that

E[(u,h) |§5] =B | Y luenh(X(t), Z(1) | &

;<K

=B | ) T h(X(t),Zt) | &

;<K

1
:E<u'§,h>

However, for X := <u,1, h>, we have

0 <X < [[hllo Y Toxsoi<ed
;<1

where « is such that h(y,-) = 0 for |y| > «. By Theorem 3.5.1 of the
next section, we have this summation a Poisson random variable with
mean 2. It follows that X has moments of all orders, and the result
follows by Lemma 3.4.2. O
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Corollary 3.4.5. The result of Theorem 3.4.4 holds for random func-
tions
h:RxExQ—=R

that are bounded and measurable with respect to B(R) x B(E) x F° and
that have compact support in their first variable. We will use the same
notation (u,h) to designate the limit for such functions.

Proof. For A € §¢° and h € B(R x E), we have
B [(ul, Wa(@)) | 8] = Ta(@) B [(ul,h | 35] = & (ul, 1)

by the previous lemma. The result follows by approximating general h
with simple functions. O

For each t > 0, let us define the random measure v; by

v¢(C) = (ug, 1) (3.13)

for all C € B(R x E). Note that, at t = 0, this definition is consistent
with the definition of the initial location/type mean measure vy. In Sec-
tion 3.5, we will establish that the marginal location measure v((- x E) is
Lebesgue, and in Section 3.7, we will prove that {v; : t > 0} almost surely
has vaguely continuous paths and thus defines a measure-valued process.
Proposition 3.3.6 and Theorem 3.4.4 give the following result.

Proposition 3.4.6. For each K > 0, let £¥ be given by (1.23). Then, in
the neutral case, we have

1.
EEE :>K—)oo Vi
Proof. By Proposition 3.3.6, we have E,'t( =4 K. But, in the neutral case

EE=E(-x[0,K) =) Sz

U<k

so the result follows from Theorem 3.4.4. [l

66



3.5 Poisson Structure

In this section, we examine the Poisson structure of the infinite-density
model Y. The first theorem is a simple consequence of Lemma 1.3.2
establishing that the Poisson({g x {r+) distribution of particles in loca-
tion/level space is stationary.

Theorem 3.5.1. For all t > 0, we have } ) §(x;(vu;) @ Poisson point
process with mean measure {g X {g+.

Proof. Note that
(X(0),W,U) ~ Poisson(R x 20 x R")

for 20 the law of W;. The result then follows from Lemma 1.3.2 as in the
proof of Corollary 1.3.3. U

In Sections 3.7 and 3.8, we will require [; and [, bounds on certain
counts of particles and pairs of particles. These bounds are given by the
following lemma.

Lemma 3.5.2. Let « > 0 and K > 0 be gwen, and define the stopping
times
T := inf{t > 0: X;(t) € [~«, af}

Z lxx<ty ~ Poisson (K (Zoc—l— \/ g)) (3.14)

;<K

Then

In particular, defining the constants

c1:=20++/20T/m

c2:i=ci(c1 +K™)
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we have

1
E E Z ]{T]?‘<T}> =C (3.15)
;<K
1 2
E E Z ]{T]?‘<T}> =C2 (3.16)
;<K
1 c
Bl > 1{T°‘<T}1{T°‘<T}) 72 (3.17)
U1<U,-<K

Proof. As observed in the proof of the previous theorem,
(X(0),W,U) ~ Poisson(R x 20 x R")

Applying Lemma 1.3.2 to the map

<o) )

o
Z 6(’(;",1.1]'] ~ Poisson(pu x {g+)

h: (x,w,u) — (inf {t: ‘x-l— VOw,

we see that that

for a measure p such that, by the reflection principle, we have
ul0, Tl = (g x 20) ({(xo,ﬁﬁ) ' Xo + vVOw; hits [—«, o] before T})
= (0 x 20) ({ (x0, W) : Iwr| > (1xo] = )/V/B or x| < } )
:20c+2J P(Z > (xo — a)/V0T)dxo
=20+ /20T/m

This implies (3.14) and so (3.15) and (3.16). Finally, (3.17) follows from
the fact that

2
2 1 1
2 > Ll < 13 > Tagatylfrecty = (f > ]{T;"<T}>

U1'_<u]'SK Ui,UjSK U]’SK

O
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The previous results dealt only with the Poisson structure arising from
the Brownian location and fixed level processes. Of far more interest is the
following result which establishes the conditional Poisson structure of the
empirical location/type/level process &.

Theorem 3.5.3. Let v, be the random measure given by (3.13).
Then, conditioned on §°, the process & 1s a Poisson point process

with mean measure vi X {g+, and v; almost surely has marginal location
measure V(- X E) = lg.

Proof. Let f: R x E x Rt — R be bounded and measurable with compact
support. Let M > 0 be such that f =0 on R x E x [M, 00).
For all K > M, by Lemma 3.4.3, we have

E [e’l‘zj f(X;(t),Z;(t),U;) ‘ %l(] — R [eTZUjSK f(X;(t),Z;(t),U;3) ‘ Sfl(i|

t

_ & [eTZujSKf(xj(t)yzj(t);ﬂ]') ‘ SK}

where ﬂj are iid uniform on [0, K] and independent of
O-{(X](T))Z](T)) u]) . j € N)T S t}
It follows that

E [eTZ]' f(X;(t),Z;(t),15) ‘ &K}

—E [E [ H eTf(Xj (t),Z;(1),05)

U; <K

of{(X(r), Zj(r),U;) :j e N7 < t}} ‘ %f}

1 K
=11« J (0, 25(0,0) gy

;<K 0

But, we may rewrite this final term and apply Taylor’s formula to show
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that
B [e"n X R

= exp( > log <1 + % J (e M4t 1) du))

;<K 0

1 O (o 1
:eXp<E<utK,JO (e f(;,)—])du>+o<f)>
K_)_Q}Q exp <<ut’J'o (efrf(.,.,u] _ ]) du>)

by Theorem 3.4.4.
It follows from Lemma 3.4.2 that

B [e72 X W) | §o] = efund (70 1)aw)
which gives the conditional Poisson distribution.

Lastly, note that for all A € B(R), we have by Lemma 3.4.2, Theo-
rem 3.5.1, and the strong law of large numbers that

Ve(A X E) = (e, Taxe) = lim Zu Upeaxiox = L(A)

O

Remark 3.5.1. As the marginal location measure of v; is almost surely
Lebesgue, it follows from Morando’s theorem (Theorem A.8.1 of [5] gener-
alized to o-finite measures) that there exists a

:R" xRxB(E) x Q - RF
D (t,x, dz, w) — V¢(x, dz)(w)

satisfying

v¢(C) :J'

J Tc(x, z)9¢(x, dz)dx (3.18)
RJE

for all C € B(R x E).
Intuitively, we may interpret 9¢(x,-) as the (random) type distribution
“at” a point x in the infinite-density model.
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3.6 Martingale Characterization

In this section, we will develop a martingale characterization of u;. Specif-
ically, we will show that for a large class of test functions h, the term
(ut, h) may be centered to form a martingale, and we will calculate the
martingale’s quadratic variation.

With respect to mutation, note that the Markov processes Yji are such
that

t

ME¥(t) = g(Viely, 1) — g(y) — j BHg(Yy(y, s))ds

are martingales for all g € D(B*),y € E,j €N, and k€ Z™.
With respect to selection, let us define the random measure

;zjjg — Z(] — ij)é(fr,-k,djk,ﬂik]
k

Observe that each point (s, {, 1) of 07 represents a potential selective event
at time s affecting particle j. The n component is the random input to the
function 1 used to select a type for the event, and the  component is used
to determine whether or not particle j will actually adopt the other type.
Note that we have

Q];r ~ Poisson(6€R+x [0,1]><[0,1])

so that
BL([0,1] x -) :=VF([0, 1] x -) — TtL()

is a martingale.
For all K > 0, f € C2(R) (the twice continuously differentiable functions
with compact support), and g € ©(B"), by Ité’s formula, we have the
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following identity
t
(uf, fg) = (ug§, fg) —I—J (uf,5f"g + fB*g) ds

+ZJ J o(W (&, X(s),m), Zy(s)

)
(9(11)(55 X (s ),n))—g(Z-(s—)))dn ds

;<K
j
+v8 Z J f'(X;(s))g(Z;(s—))dW;(s) + Z £(X;(s)) dMY(s)
u;<k V0 = Jo
) J )9(Zi(s—)) — f(X;(s))g(Z;(s—))) AV(s)
U<l <K

+ ) J L Heso1o(wige xi(s1m,230)) T X5(8))
=k Joaxion2
(a(wi&s X5(s),m) — 0(z(s-)))
ﬁf(ds x d{ x dn)
(3.19)
where the M; are given by

t
M)g(t) = ZJ 1{\/]'( B _k}dMg yZj (Tjx— )(S . Tjk)
x YO

The independence of the M;,” from the V) and Uy imply that the M; are
{§¥}-martingales for all j with U; < K.
Note that the term

J (f(Xi(5))g(Zi(s—)) — f(X;(s))g(Z;(s—))) AV(s) (3.20)

U1<U]~ <K 0

is measurable with respect to {F}. We claim it is in fact an {F¥}-martingale.

Lemma 3.6.1. The term (3.20) is an {F¥}-martingale.
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Proof. For the proof, we use the notation of Corollary 3.3.7. Observe that

d
d

where the last equality follows from the definition of \73; and the fact that

E [Z 1{ui<u,-}J (F(Xi(1)g(Zi(r—)) — £(X;(7)), 9(Z;(r—))) AVE(7)
i#jeN §

t
=E[Z > J1{cbi(r—)=i'}1{cbj(r—)=j'}1{ui,(T)<u].,(r)}

14 EN{ £/ eN Y S

(F(Re ()9(Zur(r=)) = (K5 (1)) 9(Zyr (1)) ) AV ()

t

:E[ > [ (f%era(Zotr) ~ 1%y )el
VA EN

S

Nz

(r=))) AP (1)

D Nows=inTiis=in =1

i£eN

almost surely for all i’ # j’ € N. However, by symmetry in i’ and j’, this
final term is seen to be zero. 0]

Now, for K =1, the identity (3.19) implies that
t
(ulfg) — (b fo) — | (ul, 879 + 1B + h) ds
0
is an {F!}-martingale for h?: R x E x Q — R given by

1

hex,2,0) = 109 | 0((E (@) ), 2) (9(b(Ee(w) 1) — g(z) ) dn

0

It follows that
B [(u,fo) | 8] — B [(uo, o) | 7]
t
— J E [(ug, 2f"g + fB*g + hY) | §°]ds (3.21)
0
is an {F¢°}-martingale.
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Note that the function h? depends on w only through (& (w),x,n).
But for all K > 0, by Hypothesis 3.4.1,

P& (w),x,m) =¢<<Z O(x;(s),Z;(s),0) T Z 5(x]-(s),z]-(s),u]-)) »X,ﬂ)

u; <K u;>K

which is §X -measurable. Therefore, h? satisfies the conditions of Corol-
lary 3.4.5.
Thus, by means of Theorem 3.4.4 and its corollary, we may rewrite
equation (3.21) to conclude that
t

M, = (u, fg) — (uo, fg) —J (us, 3f"g + fB*g + h{) ds (3.22)
0

is an {F¢°}-martingale.

We now wish to determine the quadratic variation [M] of this martin-
gale. First, for each fixed t > 0, we will establish the limiting value of the
angle-brackets processes <MK> . Where MKX are the martingales given by

t
MY = % ((utK, fg) — (ug,fg) — L(uf, 9¢"g + fB*g + h?) ds) (3.23)

Theorem 3.6.2. For each t > 0, we have

(M), 5 A,

T K500

where

A= 0A Jt dsj de s(x, dz)9s(x, dz') (f(x)g(z) — f(x)g(z'))2
R EXE

0

for ¥ as defined in (3.18).
Proof. We defer the proof until Section 3.8. U

We will now show that the angle-brackets process (M) is the process
given by A. We begin with the following lemma.
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Lemma 3.6.3. For h: R x E x Q — R bounded, B(R) x B(E) x F*-
measurable and having compact support in its first variable, we have

t t ]
J {(us,h) ds = limJ — (uf,h)ds

almost surely and in L, for allp > 1.

Proof. Let o« > 0 be such that h = 0 outside [—«, «] x E. Then, for s € [0, t]
and all K, we have

1 1
‘§<u§>h>‘ < [Mflooge D Mgy
U; <K

with T as defined in Lemma 3.5.2. By that lemma, we have

Z ]{T;,x<t} ~ Powsson(Kceq)
U; <K

Thus, we have

1
< Z Tpncy = €1 (3.24)

U;<K

almost surely (and in L, for all p > 1).
Therefore, for almost all w € Q, we have % <uSK, h> bounded on (s,K) €
[0,t] x N, and for all such w, we have

t t
J %<u‘:,h> ds —>J Jim %<u‘;,h> ds (3.25)
0 0 —00

by bounded convergence with respect to the integral f[o 0
Because the convergence in (3.24) is in L, for all p > 1, it follows that
the convergence in (3.25) isin L, for all p > 1. O

Using this result, we can prove the following.

Lemma 3.6.4. For all t > 0, we have
MK 25 M,
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Proof. By Theorem 3.4.4 and Lemma 3.6.3, we have

t

M = (u, fg) — (o, fg) — J {(us, 3f"g + fB*g + hY) ds
0

_ Jim {% <<u't<,fg> — (u, fg) — L (uX, 9f"g 1 fB4g + h?) ds) }
in L, for allp > 1. O
Theorem 3.6.5. The martingale M, has angle-brackets process
(M) =A
Proof. Fix 0 < s < t. By Theorem 3.6.2 and Lemma 3.6.4, we have
0= B [((ME)? — (M¥),) Izt | 5] 2 B(IMW)? — A IS | 82
so that (M)?> — A is a martingale. Noting that A is F>-predictable, the

result follows. O

In the following section, we will show that the paths of M, are continu-
ous and so [M] = (M). Thus, the results of this section may be summarized
in the following proposition.

Proposition 3.6.6. For all f € C3(R) and g € D(B"), we have
t

M = (u, fg) — (up, fg) — J (us, 5f"g+ fB¥g + hy) ds
0

a continuous martingale with quadratic variation

t

M]; = GAJ

ds j dxj 94(x, d2)s (x, dz') (F(x)g(2) — F(x)g(z)?
0 R ExXE
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3.7 Continuity of the Limit

In this section, we will prove that for any f € C2(R) with compact support
supp(f) C [—«,«] and any g € D(B"*), the processes (% <u?<, fg>)K are
relatively compact. The almost sure continuity of the paths of (u., fg) then
follows from Theorem 3.10.2 of [5].

Define the filtration

St = G{Xj(T),Z]'(T'),Uj ) € N) T S t}

and let
T :=inf{t > 0: X;(t) € [—«, «l}

By Remark 3.8.7 of [5], to prove relative compactness, it is sufficient
to establish that condition (a) of Theorem 3.7.2 holds, namely that for
allm > 0 and t € Q, there exists a compact I}, C R such that

inf P (¢ (ug,fg) €M) > 1—n
and that there exists a y*(5, T) such for each § > 0 and T > 0 we have

1
B |z ((win o) — (uk, fg))* ‘ St] <E[Y*5,T)| &
forall0<t<T—-%and 0<h<5and

lim lim EyX(5,T) =0

6—0 K—o0o

With regards to the first condition, note that for all 3 > 0, we have

1
P (1% (us10)| < ) 2 P(lllolle X ey < 8)

U;<K

where the summation is Poisson distributed by Lemma 3.5.2. Thus, this
condition is easily satisfied by choosing a sufficiently large compact [—f3, 3].

In the remainder of this section, we will establish that the second con-
dition holds.
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Let us write

hy;(s) == f(Xi(s))g(Zi(s)) — £(X;(s))g(Z;(s))

Fix T>0and 8 >0. Forall 0 <t< T-—5 and 0 < h < §, by means of
the identity (3.19), we have

‘l 2 t+h 2
5= (Wi, fg) — (ug, fg)) ™ < uX 8f"g + fB*g + h?) ds
() — (s F0))7 < (|| Gult 8179+ 1Bvg 4 1) as)

25 .
+(\/5£J

U<kt

t+h

2
fI(X)'(5))9(Zj(5_))dwj(5)>

+ (U-ZKJ'[tt—I—h]X[OHZ 1{656—1c(lb(ésf,xj(s),n],Zi(S*))}f(Xj(S))
- (9(wie,Xi(s),m) — g((5-)))

2
D7 (ds x dg x dn)>

Note that

t+h 2
E [( | ut g7g + rBeg 4 ne) ds)

t

s

< E{sz(%nf"nwngnw T IlloollB glloo

2 2
+20lfllelall) (X trr)” |} 20

;<K
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and we also have

t+h 2
B[ (V6 X [ rixnezisiawis) |5
U<kt
t+h 2
:E[GZJ (f'(X;(s))g(Z;(s)))" ds St} (3.28)
u;<kt

< E[95||f'||io||9||§o 2_ Teg<n
U;<K

;

Similarly,
" [ (UJZSK J'[t,t+h]><[0,1]2 ]{555’10(¢(isﬂxi(5)ﬂ))zi(S*))}f(Xj (s 2
(9 (W& X5(s),m) — g(Z3(s-)) ) Dy (ds x d¢ x dn))
— B [ Z J
(0 (&, Xs(5),m) — 9(Z5(s-) ) “dm ds %]
5]

U<kt
To control the third term on the right-hand side of (3.26), we will need
the following lemma. Observe that its condition holds under Hypothe-
sis 1.3.1.

.

1

fz(xj(s))j & (W(Es, X5(s),m), Z5(s—)

0

t+h

< E[4sa||f||§o||g||io Y Tpsen
U;<K

Lemma 3.7.1. If for all g € ®(B*) we have g> € D(B"), then
t
ME) | (B9~ 26B%9) (2(s))ds
0

15 a martingale.
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Proof. Observe that

MS(t) = g(Z;(t)) — J Brg(Z;(s))ds

= 3 | zts) ~ a(zi(s-)avies

Ui <Ll]- 0

_ J[O 1]x[0,1]2 ]{C§6*1 O'(ﬂ)(‘r—vsf,xj'(S),T]),Z]-(s_))}

(9(wlEs,Xi(5),m) — 9(25(s-)) ) V5 (ds x dC x dn)

Almost surely, we never have a jump attributable to mutation process and
a jump attributable to a neutral or potential selective reproduction event
simultaneously. Thus, we have

t

[M;g]t = [g(Z;)]¢ — Z L (Q(Zi(s—)) _ Q(Zj(S—)))def;(s)
U; <l
- J'[O,t]><[o,1]2 1{‘:5‘_’71"(‘l’(isﬂxj(s)m),zj(sf])}

(g(ll)(is_,Xj(S),n)) — g(Zj(s—)))Z%?(ds x d¢ x dn) (3.29)

But, we have

- ZJ oo HEsa e biE X m 2 9457

(9(W(Ee-,Xs(5),m)) — 9(Z;(s-)) ) T7 (ds x d¢ x dn)
(3.30)
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and we also have
MY () = 62(Z(0) — | Br(2(s)ds

0
- f(gz(zi(s—)) — g2(Z;(s=)))dAVA(s)
Us<u; v0
a J[O)t]x[o,]]z ]{6364 o(W(&Es— X;(s)m),Z5(s)) }
(2 (s, X5(),m) — 2(Z(s)) ) B3 (ds x d& x dn) - (3.31)
Combining (3.29), (3.30), and (3.31), the reproductive event terms can-

cel, and we have

S, — J

0

t t

(B*g* — 20BYg) (Z;(s))ds = M{" (t) - ZL 9(Z;(s—))dM?(s)

which is a martingale. O

By the lemma,

t+h 2
E!(Z | f(xj(s))deg(s)>
U<k vt

St

t+h
=E ZJ 2(X;(s))dIMS],

U<kt

§
t+h

—B| Y | ROG(s)(B1g? - 20B40) 2, (s)) s

Lu;<k 't
y

.

(3.32)

< B|8]1f121B40” ~ 20B*glloc 3 Tery

L U; <K

Let us define the stopping time
75 = inf{s > 0: Xi(s) = X;(s), [X;(s)| < o}

Noting that
t+h

> | malsaviis

U1'_<U-jSK t
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is a martingale by Lemma 3.6.1, we have

t+h 2
EK 5 J mj(s)dvs(s)) s]
Wi<ly<K It

t+h

:E[% > J hZ (s)dLy(s)

U;<U; <K t

.

< E[2A9_1||f||§o||9||io Z 1{Tg;<T} sup (Ly(s+6) — Ly(s)) ‘ &}

o
U <Uj <K ThSs<T

(3.33)

Defining

2
25 " 2
Y8, T) = @{52 (Sl lloollglloo + [Ifllool B gllco) (Z 1{T$<T})

U;<k

+ (eéllf'llﬁollgllﬁo +455]|f]|5 [l gl5

+ 8lIf1%IB"6> — 20B*glloe) 3~ Tewp<r)
;<K

+ 208 [IfllZ ol Y Teg<ry sup (Lii(5+5)_Lii(s))}

U..'L<U]'§K T%SSST
(3.34)

we may combine inequalities (3.26), (3.27), (3.28), (3.32), and (3.33) to see
that

B % ((ulin fo) — (uF, fg))” ‘ s] <E[¥6,T)| &

Now, let us define

A(3,t):=E sup (Lo(s+s) — l2os)

0<s<t

where [ is the local time at zero of a standard Brownian motion started at
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zero. Note that by the strong Markov property, we have

E l1{Tg§<T} sup (Ly(s+38) —Ly(s)) | o(X;(0),Uj:j € N)

TE<S<T

Xi,X;

S

ij

=E [E l]{Tg;d} sup (Ly(s+ &) — Ly(s)) o(X;(0),U;:j € N)

T <s<T

_E [1{T%<T}>\(5, T— %)

<A, T)E [lpgnlr<r) | 0(X(0), Uy 1§ € N)|

o(X(0), Uy :j € N)|

Therefore,

E( Z lxg <1} SUpP (Lij(3+6)—Lij(S))>

Ui <U;<K T Ss<T

= E( Z E []{ng} sup (Ly(s+ &) — Ly(s))
U1'_<U]'SK

T%SSST
O'(Xj(O),u]' : ] € N):| )

sMé,T)E( > 1{T3<T}1{T;x<n>

ui_<u]' <K

Finally, then, it follows that from Lemma 3.5.2 that for all K > 1, we
have

2
EY“(5,T) < 25{52 (311" Nloollglloo + [Ifllool B glleo) ~ €1 (T + 1)
12 2 ~11£12 2 2 Ipra2 " C1
+ (081112 1ol + 48311 flIZ lg1% + 8I1lI%IIB*9> — 29B*glloc ) 7
+ 200 [fl12 Nl glIZA(8, Thea(1 +C1)}
Now, by the continuity and monotonicity of [, it follows that

sup (I — L) =30
OSSET ( 20(s+9) 265) 520
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However, this supremum is bounded by the L; random variable [yg(s), SO
by the dominated convergence theorem, we have A(5, T) —5_,0 O.
From this, it follows that

lim lim EyX(5,T) =0

6—0K—o00

and the relative compactness and continuity of (% <uK,fg>)K are estab-
lished.

Remark 8.7.1. Observe that for the martingales M* defined in (3.23), we
have (cf. inequality (3.26))
1
16

s(\/ézj

<kt

(M};Lh - Mf)z

t+h

2
fI(Xj(5))9(Zj(5_))dwj(s)>

! (Z J[t t+h]x[0,112 ]{CS‘_’*]‘T(ﬂ’(isﬂxi(SJ»TILZ;'(S*))}f(Xj(S))
;<K ’ ’

(g(lb(ésf,xj(S),n)) — g(Zj(s—)))
B?(ds x d¢ x dn)

t+h 2
+< > | mj(s—)dV$(s))

Ui<U;<k vt

and so the proof above also establishes relative compactness of (MX)x and
the continuity of the limiting martingale M defined in (3.22).

3.8 Calculation of the Quadratic Variation

In this section, we will prove Theorem 3.6.2, completing the martingale
characterization of Section 3.6.

84



Let us write

Note that, by (3.19), we have

Mt ]E <<ut ) f9> <u0 , fg> J <u]s<) gf/lg + fBHg i h:_> ds)
B %(ﬁ > J '(X;(s))g(Z;(s—))dW;(s)
u;<k V0
<o f
—I_u]-ZgKJ[O,t]x[o,ﬂz fega o wles Xy(s)m) (s} (X5 (8))

(g(w(as,,xj(s),n)) —g(Zs ))sﬁc (ds x d¢ x dn)
+ ) J NAM{(s) + Y J —)dVi(s ))
;<K U;<U; <K

The first three terms on the right-hand side are martingales, and the last
is also a martingale by Lemma 3.6.1. Therefore, we have

MK> T K2 uZ<KJ Zj(s_)))zds
- 1
+L§<J L o (b(Es,X,(s), M), ()

(9 (Ea, X5(s),m) — g(25(s-)) ) dn ds
}\ t
KZ Z J fz ))d<MJg>s+ 20K2 Z J hizi(s_)dl-ij(s)

;<K U;<U; <K 0

As K — o0, the first three terms converge in [; to zero by arguments similar
to those used in the last section. It remains only to show that the final
term converges in L; to the process A defined in Theorem 3.6.2.

For each K > 0, n € N, define
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Hy = j [ (n - |, #1290, dz)ay

x+1; 2
— (nJ J f(y)g(z)@s(y,dz)dy) >dx26ds
E

X

H = J; JR (L 2(x)g?(2)9(x, dz)

2
— (J f(x)g(z)9s(x, dz)) )dxzeds
E

Noting that H = 26A~'A, we need only prove that Hg L—1> H. To do
this, we will establish that:

® Y, = m]( E |HK - HK,n| ——mooo O)
e for all n, Hx L_1)K—)oo Hq;

e and H, =, ., H.
Then, it will follow that
@EmK —H|< @EmK — Hi | +@E|HKM —H,.|+EH, —H]
=Yn +E[H, —H]

— 0

n—oo

giving the desired convergence.
Let us begin by establishing the convergence of vy, in the following
lemma.

Lemma 3.8.1.
Yn :=limE Hg — HK,n| — 0
K n—oo
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Proof. Let k, be a C?>(R) approximation of | - | given by

{M, x ¢ [-1,1);
Xx) = I

2¢1 3
e+ M e (210,

n’n

Note that ‘kn(x) — |x|| < 1/3n for all x € R and that [k (x) —sgn(x)| =0

except on [—1, 1] where it is bounded by 1. Also observe that

n’'n

so by the Meyer-I1té6 Formula [10, Theorem IV.51], we have

(kn(Xij(t)) — |Xij(t)|) = (kn(Xij(O)) — |Xij(0)|)

t
—+ J (k‘:l(XU (S)) — sgn(Xij(s))) dXij(S) -+ Lg(t) — Lij(t) (335)
0
Since, by the product rule, we have

(ke (X55(1)) — X5 (1)) R (1) = (ke (X5 (0)) — X5(0) )13 (0)
+L@waammam—maw)

+ Jo (k,n(XU(S)) - |X'L](S)|) d(h%)(S)
+ [kn(Xy) — |Xii|>hizi]t
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it follows that

Jt hi(s)d (L} — Ly) (s) =
0

(kn (X55(t)) = X5 () )1 (£) — (kn (X55(0)) — X35 (0)]) 5 (0)

~ | (alston = s (51 amg (s
— [kn(Xy) — Xyl h5],  (3.36)
Now, as
T 1 ’ 2 n
Yn = 11]£nE @ Z L hi;(s)d (Lij —Ly) (s)
U;<U; <K

we may establish the lemma by establishing the limit

1
o Z (.)‘:o
U;<U; <K

for each term on the right-hand side of (3.36).
For the first term, defining Tf* := inf{t > 0: [X;(t)| > o}, we see that

limlimE
n K

Bl Y (ka(Xolt) — Xy(t)) (0

ui<u]'SK
1 5 Allfll3Ngllz
<E [KZ n ]{T‘f‘<t}

U <U;<K <t

2 f 2 2
< HflEolle,

n—oo

by (3.17) of Lemma 3.5.2, and the same argument holds for the second
term.
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For the third term, note that
1 vt
M= 13 > J g5 (s—) (kn(Xi5(s)) — sgn(Xi(s))) dXi;(s)
U;<U; <K 0

is a martingale with quadratic variation

1 t ,
M=z | hbls=) (kX)) — senlXs(s)))* 20s
1
<K T 1pmaylilariae
Ui<lj<k  |G<t

Therefore, by Jensen’s inequality, we have

1
1 2
BIM| < (BM?)} = (BIM])F < (@||f||‘;o||g||ioetcz) — 0

For the fourth term, note that, by 1t6’s formula, we may write hfj (t) as
the sum

() = H3(0)+ A1) + Myt) + | Mylsm)dli+T)s)  (337)
for a finite variation process
Ay(t) == L (hij(s_) (f"(Xi(s))g(Zi(s—)) — f"(X;(s))g(Z;(s—))

+2(Xi(5))B49(Zi(s)) — 26(X;(s))B*g(Z(s))
+ (FX(s))9(Zils=))" + (X)) 0(Z5(5-))) ) ds

a martingale

Mst) = 2| (s (F0X(s))g(Z: (=) X9
— 1/(X5(5))9(Z;(5—))dX(s)
+ F(Xi(s))AME(s) — FX5(5)) M (5))
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and a jump process

)= Tue<uy(9(Zils—)) — g(Z(s—))) Vi(s)
k

+J[O,t] [0,1)2 ]{C<G_1 (WlEs—X;(s)m),Z5(s—)) }
( (W(&s—, X;(s),m)) —g(Zj(s—)))m)sf(ds « 7 x dn)

By Tonelli's theorem, we have

where

C1 =4 fllsollglloo (I f"lloollglloo + 21[llocl B gllo0) + 21If'lI3]IglI5 < 00

We also have

Mim g 3 | (Xy(s) = X (sl My

U;<U; <K 0

a martingale whose quadratic variation has expectation satisfying

BIMIL =Bz 3 | (kalXy(s)) = PXy(s))* dIMy](9)

Ui<u;<k v0

< eallflZlolt Y @olfIliolit
1_<U.j§K 2 w2 "
+ 2|[f[[%[[B*g” — 29B g||oo)]{’rf‘<t}

T]?‘ <t

by Lemma 3.7.1. By Jensen’s inequality, we have

N|=

E|M < (EM?)? = (E[M],)? — 0

K—oo
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The term involving the jump processes J; may be similarly controlled,
and it follows that

ImimE ;Y || (ka0 50) = Py (s)) lhd)(5) = 0

U1<U]- SK

Finally, for the fifth term, equation (3.35) in combination with the de-
composition (3.37) implies that

[kn (X55) — X351, ],

= [ O(kI(Xij(S)) —sgn(Xy(s))) dXy(s),

2 ) (70X (s)) g (Zi(s—)Xils) — F/0% ()92 (s)

0
X5 AME(s) — FX(5))am 5] |

2 j (K'(Xs () — sgn(Xyj(5))) by (s—)
(FX:ls)9(Zi(s=)) = £'(X(s))g(Z;(s—)) ) 0as
< Se”f“oo“fI”oo”g”io L 1{Xi]-(s)g%}]{lxi(s)l,lxj(s]lS(x}ds

so we see by Tonelli’s theorem that

1
E W Z [k'n( ) |X1]|a U}

Ui<U]’SK
t
1
< 801/ ol 01 B | 15 Y txoed) oo
o K Ui <U;<
5 t x ]
<800l elolZ B n [ 5 3 T b ds
0 Joa ™ ycuy<k
) t o4 ]
<801l Plollolls [ 1| By X Tpensren saepéxds
0 Joo U;<U; <K
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However, this last expectation is 1/K? times the expected number of un-
ordered pairs in location-level space [x — T]—l,x + %] x [0, K] and so has value
1 —1 (-1 —1
E K2 Z Txaom (s)ebe Lo i) ST (K™ +2n7")
U;<U; <K

Finally, then

] — —
Bl > [ka(Xy) = X0, 03], | < 160]Iflloollf'l|oollgll2te (K™ + 2071
U.{<U]'§K
and we have the result. =

Lemma 3.8.2. For each n € N,
L1
HK,n — Hn
K—o00

Proof. By Tonelli’s theorem,

t
E[Hkn,—H, =E J J (V& — o2,) dx28ds (3.38)
0JR
where
K nz 2
Vs,x = ﬁ Z ]{X{(S],Xj(S)E[X,X‘}‘%)}h:Lj (S)
Ui<UjSK

&:GF%

X

L#w&mmuw@

+1 ?
—GL memm»ww))

Z Vs 1eteat )0 (s (51,23 00) ~ POs0m(R)
)

However, noting that

for u given by

wA x B x C):= R(C)J Vs(x, B)dx

AN [x,x—f—%)
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let us reorder the points
2 8%y(.250.00) = D_ T xteretuc 111009125 (5).y)
j j

so that the levels ﬁj are strictly increasing. Then, note that for all K, we
have

NE,
2 Uxgisrenor IO (2506) = D 8(xy06),2,(6)
U; <K j=1

with NK ~ Poisson ( ) and the (X( ), 2 (s)) iid and independent of Ns
with d1str1but10n given by

X

nl, o 1)9s(x, dz)dx

X,X"‘R

Therefore, by the strong law of large numbers, we have

VK

o Z 2:()) — 1(R(s))a(Z5(s)))”

1—1)1

NsK,x 2
ZKZ( szz (Z5(s)) —z<Z f(&-(s))g(ij(sn) )
j=1

nNK z 1 pt 2
_ ( ) Zf 2080 — { g 2 F’(sDalZ(s)
SX J ‘| =

SERR(s) g2 (s)) — (Ef(521(s))g(21(s)))2
=07,

for all s € R", all x € R, and almost all w € Q.
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Since

|V;<,x_ Of

)X|

1
< 1{‘X|So¢+%}”f||§o”g”§o (4le Z ﬁ]{UKUjSK}]{Tf‘<t}]{"r]5"<t} +1+ 1)

&)

2
1
< 1{|xga+;}||f||§o||g||§o(z+2n2 (Z Euu,.gnW}) )

j

2
' 1
E UO L« Tcar 1)1 Nl% (2 +2m? (Z El{“j<K}]{Tf‘<t}) )] dx ds

)

2
1 1
=2t <0¢+ H) IlIZl9l% (2 +2n’°E (Z E]{U;'SK}]{T]‘-"Q}) )

)

1
=2t (et ) IR Mgl 2+ 2ncy)

the result follows from equation (3.38) and the dominated convergence
theorem. H

Lemma 3.8.3.

L1
H, — H
n—oo

Proof. Fix t > 0 and w € Q. Define

]
X+R

b= |

X

L hiy, 2)9:(y, dz)dy
W (x) = J h(x, 2)9: (x, dz)
E

By the fundamental theorem of calculus, we have u/® — pf9, and so
(uf9)2 — (uf9)2, almost everywhere on R. Noting that

(e () < ISl gl5e T o 1 s 2y (X)
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for all x € R and n € N and that this bound is integrable over R, we may

apply the dominated convergence theorem to conclude that

| st ax - | (o 2ax

R R

Also, observe that (by interchanging integrals) we have
J uh 9% (x) dx :J w9 (x)dx
R R

Combining equations (3.39) and (3.40), we have

— 0

J, (155700 = ™" 00 = (2002 + (02 (0)2)

for all (s, w) € [0,t] x Q, and as the left-hand side is bounded by

1
8 — | Ifl1%l1gll3
(o ) Il < oo

(3.39)

(3.40)

the result follows by the usual bounded convergence theorem with respect

to the integral E f(t) ...ds

This completes the proof of Theorem 3.6.2.
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