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Stepping Stone Model

one-dimensional lattice n=1Z of sites;

initially distributed iid Poisson mean n—1K

at each site;
random walk migration (rate 6n2);
mutation of types;

Moran dynamics at each site.
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Chapter 1: Spatial Moran Models

e Construct a stepping stone Moran model;

e Derive limiting system of interacting
Brownian motions.

The Generator

For x € (n~'Z)> and z € E>:

Anf(xv Z) = Z Brg;,jf(xv Z) + Z B_;Lf(X, Z)
J J
+ ) (V2 + 0z, 2) (F(xni(zl2)) — £(x,2))

with n;(z|z0) := (21, 22,. .., 2j-1, 20, Zj41,- -+ ) and

B f(x,2) 1= 6n? ef(m(x | z; + 1/n),z)

1
+ 3T 5= 1/m),2) = (x.2))

Blf(x,2) = /E (£, mi (2 0)) — £(x,2)) (25, d=o)



Explicit Construction

We will construct a solution (X, Z(")) as
follows. Define location processes:

XM (@) := x(M(0) + ~whon?t)
n

and define pairwise interaction counting
processes:

(M)A - AA ﬁ/t

Vig O =N <2 o L @=x

()0, . o -/’f

V;j (t) = ]\fz‘7 (0‘ 0 1{Xi(n)(s)=XJ(-n)(s)}ds
to count when j (maybe) copies i's type.

(Where we've assumed 0 < o(-,-) <7.)

Defining the Type Process (cont.)

For k € N, time 7 is an interaction of 5 with
a specific particle q.

If potential selective, event becomes actual
selective with probability:

(_T_lo' (Zz(n) ('T‘jk—), Zj(n) (’ij—))

If neutral, event is always ‘“actual.”

Take new type of j to be:

7™M (7,—), if event is actual;

5(n)r~ \ _
A L) =
i (k) {ZJ(")(;J-,C_), otherwise.

Defining the Type Process

Order all random times when j (maybe)
copies someone’s type:

0=7j0<Tj,1<Tj2<Tj3<...
Let Z(™ be such that
2000 = Yir (207 Gyt = Tt
;jk: <t< ;j,k+1$ ke 7t
where Yj;(y,-) are independent copies of the

mutation process started at y.

Now, we need only define all Z{™ (7).

Potential vs. Actual

Potential selective events Vign)"’ take place at
time change

t
1 . o
"/o (xM(9)=xM ()"
and are filtered according to
5 1o <Z§")(s—), Z§">(s—))

so actual selective events 17i§-")’” take place at
time change

t
=(n) 5(n)
7 ) Z; 1 -
/oa< i (s), 25 (s)) {XZ'(")(S)—XJ(n)(S)}dS



Brownian Limit

As n — 00, location processes converge:

and (scaled) interaction integrals converge:

1 d
"/o ™M ()=xM ()"
= (20)7'LY(X; - X;)

Explicit Construction

Define location processes:
X;(t) == X;(0) + Vow;(¢)

and define pairwise interaction counting
processes:

A - A (A
Vii () == Nj; <4_0L0(X'i - Xj))
5 — o (% ;0
V(0) = NG (S, L0(X; — X;))
to count when j (maybe) copies i's type.

Create a type process as before:

e mutate between interactions Y (y,-);

e at interaction, copy if “actual” event.
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Brownian Model

e particles live on R;

e initially distributed Poisson(K/{R);
e Brownian migration;

e mutation of types;

e pairwise Moran interactions driven by
local times.
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Chapter 2: Infinite-Density
Stepping Stone Model

e Construct an ordered stepping stone
model;

e Couple Moran and ordered models
(generator argument);

e Construct an infinite-density neutral
model embedding the finite-density
neutral models.
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Ordering the Model

Assign iid uniform levels to particles,
independent of location and type.

Neutral interactions only occur in one
direction. Only the higher-level particle
changes its type.
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Comparison of Generators

For x € (n"1'Z)* and z € E*=:
Anf(x7 Z) = Z Brg;,jf(xa Z) + Z B_;'lf(xa Z)
J J

+ > (V24 0z 2) (f(x.mi(2l2) — F(x,2))
i£]

,=;
versus (for u € [0, 1]*)

Anf(x,2,u) =Y BY f(x,2,u) + Y Blf(x,2,1)
J J

+ Z (l{ui<u_,})‘ + U(Zia Zj)) (f(xa ﬂj(Z|Zz‘)) - f(xa Z))
i#]

T=1;
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Coupling via Generators

If Vig.")”\ is the counting process of (ordered)
neutral interactions:

(MArpy
VMA@ =

t
Lo Vi (A/o 1{X£")<s>=x§">(s)}ds>

then let ® be such that

ZORERDY JNCICOEENES)
Voi(s—),(s—)(ds)
where
220
Vi) = 121 &iji

for &;;; iid fair coin flips.

Note j — @;(t) is a permutation of indices N.
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Coupling via Generators (cont.)

Using filtered martingale problem machinery,
we show that

x{W,z{y =4 (x(mM, 7))

where ng) means:

(n) (n)
<X¢1(_)(-), Xq;.z(.)(')a - )

Since @ is permutation-valued, it follows that

R P D D I P
%3 XM (),2M ) XJ: XM,z )
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Chapter 3 (first half):
Infinite-Density Brownian Model

e Construct a (finite-density) ordered
system of interacting Brownian motions;

e Study selection mechanism in limit to
construct an infinite-density ordered
model with selection;

e Couple Moran and ordered models
(level-flipping argument):

— Couple finite-density Moran and
ordered models;

— Couple infinite-density ordered model
to “hybrid” model.
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Infinite-Density, Neutral Model
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Finite-Density Ordered Model

Define location processes:

and define pairwise interaction counting
processes:

Arpy A Ao
Vi; (1) = Ly<u;3Nij <2—0L (X — Xj))
& — o (% ;0
T5(0) = NG (5 L0(X; - X))
to count when j (maybe) copies i's type.

Create a type process as before:

e mutate between interactions Y, (y,-);

e at interaction, copy if “actual” event.
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Limiting Selection

Define
V=2
i7£j
counting all potential selective events
affecting particle j.

Then

and, for each fixed j,
o0

20K Z,
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Selective Events

Create a type process almost as before:

e mutate between interactions Yx(y,-);

e at interaction, copy if “actual” event.
But, what do we copy for a selective event?

For now, suppose

ZO = w (Z 5(Xi(5_)azi(5_)an)’ XJ(S_)’ n)

gives us a candidate type when n ~ U[0, 1].
As before, potential becomes actual with
probability

5710 (2o, Z;(s—))
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Infinite-Density Ordered Model

Define location processes:

Define pairwise neutral counting processes:
A
Aray — A 0
Vii () = L,<v3Nij (2*0L (X; — Xj))
to count when j copies i's type
Define per-particle potential selective event
counting processes:

V7t == NI (5t)

to count when j (maybe) copies the type of a

“nearby” particle.
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Coupling via Level-Flipping

Create a finite-density intermediate model:

e particles start with iid uniform levels;

e neutral events are ordered (high copies
low);

e immediately after a neutral event,
particles swap levels half the time.

Ignore levels and follow indices, and you
“see” the symmetric model.

Ignore indices and follow levels, and you
“see"” the ordered model.
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Intermediate Model
Coupling via Level-Flipping (cont.)

@ = level of particle j

Ké Also can create an infinite-density hybrid
Us G ©©) ©©) ©0;
QEO model:

(X2,25)
U@ 20> @@ 06
UG 13 DD b @D e below level K, looks like symmetric;

t e above level K, looks like ordered.

(X, Za)

Us(a 42 21 00
As a consequence, the infinite-density model

t to ts ta ts  te can be broken in two at any level, and you

can ‘“ignore the levels” of the bottom part.
Consequence: Z] 5(?}()}2]()) = Z] 5(Xj(-),Z]-(-))
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Chapter 3 (second half):
Infinite-Density Brownian Model

Location/Type Measure

Write
e Define infinite-density location/type X
measure-valued process (via backwards <“t ’h> = Z h<Xj(t)ij(t))
martingales “in level space”); UjsK

Note that %<u{(, h> is the average “h-ness”

e Establish conditional Poisson structure of of all particles below level K.

particle system;

e Characterize the measure-valued process If limits
with martingales using: (ug, h) ;= lim —<u{(,h>
K—soo K

— "hybrid” model symmetry; . . . .
exist, they will characterize the location/type

— backwards martingale convergence; distribution of the infinite-density process.

— Poisson structure.
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Location/Type Measure (cont.)

Define filtrations
K .__
§t = "{ZU,-SK%XJ-(r),zj(r))’

ZUJ->K 5(Xj("')aZj("')an)’T < t}

and 3° = Nk>o035.

By the hybrid model coupling:

& [(u.h) [ 5] = & (ul. )

and by backwards martingale convergence:

B [(udh) |85 5, E(udoh) | 37)

K—o00
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Selection Revisited

There exists v such that
w(C) = [ [ 1o(z,2)on(a,d)de
for all C € B(R x E).

So, v (x,-) is rather like the probability
distribution of types “at” point =z.

Wouldn't it be nice if, conditioned on S}’Z’U,

the candidate type

Zo =1 (€s—, X;(s—), )
had distribution 74(X;(s—),-)?
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Poisson Structure

Assume Poisson starting conditions.

For every t > 0, conditioned on §F¢°,
& = gd(Xj(t),Zj(t),Uj) ~ Poisson(vs X Lyp+)

where

v (A X B) 1= (ut, LaxB)
Also, (- X E) = lp.
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Martingale Characterization

All this machinery allows us to show that, for
f € C2(R) and g € D(BH),

My 2= (ut, fg) — (uo, fg)
= /t<u 85"g+ FB g+ hJ) ds
o\ 2 g g s
is an {§g°}-martingale where
W (2,2,0) = 1) [ o (6 (@),2m),2)
(g(w(ﬁs—(w), z,m)) - 9(2))dn
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Quadratic Variation

Using the same machinery, we can establish
that

(M%), 25 (),

M = 1 ((u, 19) - (u 5a)

- (uE, 91”9 + FBig + hT) ds>
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Tightness

Using another involved argument, we can

establish that (% <u.K,fg>)K and (MK)K are
tight.

A consequence of this, since the maximum
jump size goes to zero, is that the limits are
pathwise continuous. (And the angle-brackets
process of M is also its quadratic variation.)
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Quadratic Variation (cont.)

Using a physically painful analysis argument,
we can establish that

(M) = 0,\/0' ds/Rdm /ExEDs(w,dz)Ds(:z, dz')

(F@)9() — F(@)g(N))?
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Complete Martingale Problem

For f € C2(R) and g € D(B*),
My := (u, fg) — (uo, fg)
t
— [ (uss 85”9 + £B"g + h7) ds
is an {Fg°}-martingale with quadratic variation
[ME] = ox /0 ds /R dz /ExEﬁs(m,dz)Ds(w, dz")

(F@)9() — F@)g(N))?

36



Mueller-Tribe SPDE

e Two types E ={0,1};
e No mutation;
e 0(1,0) =oa0.

Then, for g = §1 and u(s,z) = vs(x,d1), we
have

/Rf(x)u(t,x)dx—/Rf(a:)u(o,x)dx

[ [ (35" @uts, )
+ ou(s, ) (1 — u(s, x)))dw ds

a martingale with quadratic variation

260\ /Ot/R 2(z)u(s, z)(1 — u(s,z))dz ds

Thus, u is a weak solution of:

i =8Au+5u(l —u) + /200u(l — u)W
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