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Particle Motion with Dual

Let Z, Z be continuous Markov on
interval E C R with semigroups P; and P,
satisfying P;1 = P;,1 = 1 and the duality

[ 1Pigdm = [ gPuf dm

for all f,g € p€ and some diffuse Borel m with
0 < m(a,b) < oo for all a < b, a,be E.

Hypothesis 2. There exists E, — FE relatively
open in E with m(E,) < co and

/E P*{op, <t}m(dz) < oo
where

oq=inf{t>0:2Z() € A}

Note: The notation and framework borrow heavily
from (DEFKZ, 2000).

General Lookdown Systems

Definition 1. Given a countable index set i,
a genealogy is a timed, directed graph

® C (0,00) x U x U

For (t,u,v) € &, we write u % .

Interpretation: Particles indexed by i have
initial types 9 € {0,1}. At time t, particle u
looks (down) at particle v and copies its type
just prior to time t.

If & satisfies some axioms, then there exist
jump processes (cadlag in the discrete
topology) started at 0 with

. ¢
Oty = [0 T
8. (t—), otherwise

An Interacting Particle System

Let vg be a measure on E x {0,1} with
vo(- x {0,1}) = m, and take
Vg = Z 5(20 x0u) ™ Poisson (Vo X g(O,oo))
uell

urru

Then, let Z, given Wy be conditionally
independent copies of Z each started at Z9.

Finally, for a genealogy & satisfying the
axioms, define the system

Owy =3 O 2u(£) B ru(t) )
uel



Particle Systems with Slow Local
Interactions (B., 2002)

Let Ly, be a continuous additive functional of
(Zu, Zy) such that

Luv(s) - Luq;(T) >0 <
3t € (r,5) [Zu(t) = Zy(1)]
That is, Ly is @ continuous, monotone
increasing processes that increases when (and
only when) Z,(t) = Z,(t).
For X\ € (0,00), define
&N = {(t,u,v) : AVip(t) > 0,u > v}

Existence of &* Systems, \ < co

Theorem 3. The genealogies &*, \ < oo
satisfy the axioms. That is, there exist cadlag
type processes Anu for these genealogies and
cadlag particle systems

Ay = > O 2 (t) Mo () )
uel

Particle Systems with Fast Local
Interactions (DEFKZ, 2000)

Let

[u]y ;= {v e d: Z,(t) = Zu(t)}
It turns out [u]; always has a minimum.
Denote it by |u]¢.
Define

&% = {(t,u, [ue)  ult # u, w e Ut > 0}

If type processes exists, they satisfy
Zu(t) = Zy(t) = ku(t) = ko(t)
SO, in spirit, this is really the genealogy

{(t,u,v) © Zy(t) = Zu(t), u > v}

J1 Convergence

Theorem 4. Forn € N, M > 0, there exists a
family (0))xe(0,00) Of time changes such that
for all'T > 0O,

lim sup |0,(t) —¢t| =0
—00 ¢t<T
and

lim sup sup |[Mru(t) — Pru(85(t))| =0
A—00 t<T UESIWJL

where

S i={uedn(0,M) : Zy,(0) € En}



Exchangeability of Levels

Fix A < oo (and drop it from the notation).
For M > 0O, define
M . _ ~
St T U{ ZUEHO[M,OO) 5(Zu(7"),ﬁu(7")’u)’

Zuéﬂﬂ(O,M} 6(Zu(7’)7’iu(7")) S t}
Lemma 5. We have

uedN(0,M)

5]

_ M
=2| ¥ Szmmmrsy |5

ueidN(0,M)
for YT, conditionally iid uniform on (0, M)

given TV.

Proof of Theorem 6

By Lemma 5,
E[XE(R) M
T Lucth(Zu(®), ra(®) ’stM}

ueidN(0,M)

Z l’ru<1h(2u(t)7’€u(t)) ‘Si\/l}
uelN(0,M)

Z h(Zu(t)y ku(t))
ueldN(0,M)
= xM(n)

=E

=E

1

But, E[X}(R)|SM] is a backwards martingale
in M € (0,], so

xM(h) = E[XER)[FM] — E[XE(R)[F]
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Convergence of XM

Note: §M| in M, so take F° := Nyr>o 3.

Define

M ._
XT=ar 2 2w
ueidnN(0,M)
Theorem 6. For h € B(E x {0,1}) with
support in Ep x {0, 1},
XM (h) | EIXH()[F) = Xi(h)
—00

almost surely and in Ly, p > 1.

10

Conditional Poisson Structure

Theorem 7.

L[y | §7°] = Poisson(X¢ x £(g o))

Proof. Let f be supported on
E, x {0,1} x (0, Mg). For M > Mg, Lemma 5
and Taylor give

EL O]

:E[exp(@ Z f(Zu(t),m(t),“m))

westn(0,M)

1 M
= H MA exp(0f(Zu(t), ku(t),v))dv

w€eUN(0,M)

=exp( Z Iog(l—i—

uetn(0,M)

sl ([[ (- Joso (3)
(| (-1)o)

s;”}
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An Ito Identity

Say that
t

ML(t) == F(Zu(t)) — F(2u(0)) — /O Af(Zu(s))ds

is @ martingale. Then, we have the identity
1
X0 (f9) = X310 — [ X ((Apgpas
1 t
AP LS CONIHE)

ueyn(o,m) ” 0

+% Z /O(f(Zv(s—))g(m(s—))—
wre0OM T £ 7, (5-))g(hu(5—))) Vi (s)

(with Vi, appropriately defined for A = o).

Claim 8. This last term is an &gM—martingale.
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Brownian Case (B., 2002)

In the case

e )\ < oo
e Z, Z standard Brownian;

e m Lebesgue on E = R,;

e Ly martingale local time at 0 of Zy, — Z,.

then
1 .
= EAU + /4 u(l —u)W
for W a space-time white noise.

15

Martingale Problem

For M = 1, the identity gives

X} (79) - X3(79) - [ XE((ADg)ds

an Fl-martingale. If X; := E[X}(-)|35°] exists
as a ‘“nice” process, a well-known result gives

Xi(f9) — Xo(f9) - [ ' X.((Af)g)ds

an §g°-martingale.

Formally, if u(z,t)m(dz) = Xy(dx x {1}), then
= Au+ M

where M is some martingale noise.
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Space-Time Scaling (Tribe, 1995)

The SPDE given by
1 .
has a compact support property. Define

Ly = inf{z : u(z,t) < 1}
R :=sup{z : u(z,t) > 0}
Then, if —co< I} < R < oo at t =0 then it
holds for all ¢t > 0.
Take a space-time scaling
vgn)(x) = u,2,(nx)
In the limit n — oo, RM™ — L™ £, 0 and

R™ 4, B,

16



Another View of the Scaling

But, Be Careful!
If us(x) solves

1 .
u==Au—+ Ju(l —u)W
2 We've shown
then vt(”)(sc) = u,2,(nx) solves

1 e For each box E, x {0,1} x (0, M), there is a family
(M) = ZAp() 4 \/nv(”) (1 _ v("))W of time changes §,. On each compact time
2 interval as A — oo, we have §, — id uniformly and

eventually *W, = ®W; y on the box (and so

S . AYM — coxy M Y-
Thus, Tribe's result is really: X X3 on En);

Theorem 9. Define e For fixed X, *XM(A) — *X;(A) as M — oo for all
compact A.
AL = inf{z : "Xy ((—o0,z) x {0}) > 0}
ARy i=sup{z : *X¢((z, 00) x {1}) > 0}
Then, as A\ — oo in the Brownian case, both

AL; and *R; converge to the same Brownian
motion. AL — L

)\R_)OOR

but we can't conclude *X — X in a sense
that would give

This begs the question, why not look at *®°I;
and ®°R; directly?
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