General Lookdown Systems

Interface Solutions of Lookdown Particle Systems, Part II: Limiting Measures and SPDEs

Kevin A. Buhr

Definition 1. Given a countable index set \mathfrak{U} , a *genealogy* is a timed, directed graph

$$\mathfrak{G} \subseteq (0,\infty) imes \mathfrak{U} imes \mathfrak{U}$$

For $(t,u,v) \in \mathfrak{G}$, we write $u \stackrel{t}{\longrightarrow} v$.

Interpretation: Particles indexed by \mathfrak{U} have initial types $\kappa_u^0 \in \{0, 1\}$. At time t, particle u looks (down) at particle v and copies its type just prior to time t.

If & satisfies some axioms, then there exist jump processes (càdlàg in the discrete topology) started at κ_u^0 with

$${}^{\mathfrak{G}}_{\kappa_{u}}(t) = \begin{cases} {}^{\mathfrak{G}}_{\kappa_{v}}(t-), & \text{if } u \xrightarrow{t} v \\ {}^{\mathfrak{G}}_{\kappa_{u}}(t-), & \text{otherwise} \end{cases}$$

2

Particle Motion with Dual

Let Z, \hat{Z} be continuous Markov on interval $E \subseteq \mathbb{R}$ with semigroups P_t and \hat{P}_t satisfying $P_t 1 = \hat{P}_t 1 = 1$ and the duality

$$\int f P_t g \, dm = \int g \hat{P}_t f \, dm$$

for all $f, g \in p\mathcal{E}$ and some diffuse Borel m with $0 < m(a, b) < \infty$ for all a < b, $a, b \in E$.

Hypothesis 2. There exists $E_n \rightarrow E$ relatively open in E with $m(E_n) < \infty$ and

$$\int_E \hat{\mathsf{P}}^z \{ \sigma_{E_n} \le t \} m(dz) < \infty$$

where

$$\sigma_A := \inf\{t \ge 0 : \hat{Z}(t) \in A\}$$

Note: The notation and framework borrow heavily from (DEFKZ, 2000).

An Interacting Particle System

Let ν_0 be a measure on $E \times \{0, 1\}$ with $\nu_0(\cdot \times \{0, 1\}) = m$, and take

$$\Psi_{0} := \sum_{u \in \mathfrak{U}} \delta_{(\widehat{Z}_{u}^{0}, \kappa_{u}^{0}, u)} \sim \mathsf{Poisson}\left(\nu_{0} \times \ell_{(0, \infty)}\right)$$

Then, let \hat{Z}_u given Ψ_0 be conditionally independent copies of \hat{Z} each started at \hat{Z}_u^0 .

Finally, for a genealogy ${\mathfrak G}$ satisfying the axioms, define the system

$${}^{\mathfrak{G}}\Psi_t := \sum_{u \in \mathfrak{U}} \delta_{(\hat{Z}_u(t), \mathfrak{G}_{\kappa_u}(t), u)}$$

1

Particle Systems with Slow Local Interactions (B., 2002)

Let L_{uv} be a continuous additive functional of (\hat{Z}_u, \hat{Z}_v) such that

$$L_{uv}(s) - L_{uv}(r) > 0 \iff$$
$$\exists t \in (r, s) \left[\hat{Z}_u(t) = \hat{Z}_v(t) \right]$$

That is, L_{uv} is a continuous, monotone increasing processes that increases when (and only when) $\hat{Z}_u(t) = \hat{Z}_v(t)$.

For $\lambda \in (0,\infty)$, define

 $\mathfrak{G}^{\lambda} := \{(t, u, v) : \Delta V_{uv}(t) > 0, u > v\}$ where $V_{uv}(t) := N_{uv}(\lambda L_{uv}(t)).$

5

Particle Systems with Fast Local Interactions (DEFKZ, 2000)

Let

$$[u]_t := \{ v \in \mathfrak{U} : \widehat{Z}_u(t) = \widehat{Z}_v(t) \}$$

It turns out $[u]_t$ always has a minimum. Denote it by $|u|_t$.

Define

$$\mathfrak{G}^{\infty} = \{(t, u, \lfloor u \rfloor_t) : \lfloor u \rfloor_t \neq u, u \in \mathfrak{U}, t > 0\}$$

If type processes exists, they satisfy

$$\hat{Z}_u(t) = \hat{Z}_v(t) \implies \kappa_u(t) = \kappa_v(t)$$

so, in spirit, this is really the genealogy

 $\{(t, u, v) : \hat{Z}_u(t) = \hat{Z}_v(t), u > v\}$

6

J_1 Convergence

Existence of \mathfrak{G}^{λ} Systems, $\lambda \leq \infty$

Theorem 3. The genealogies \mathfrak{G}^{λ} , $\lambda \leq \infty$ satisfy the axioms. That is, there exist càdlàg type processes λ_{κ_u} for these genealogies and càdlàg particle systems

$${}^{\lambda}\Psi_t := \sum_{u \in \mathfrak{U}} \delta_{(\hat{Z}_u(t), {}^{\lambda}\kappa_u(t), u)}$$

Theorem 4. For $n \in \mathbb{N}$, M > 0, there exists a family $(\delta_{\lambda})_{\lambda \in (0,\infty)}$ of time changes such that for all T > 0,

$$\lim_{\lambda\to\infty}\sup_{t\leq T}|\delta_{\lambda}(t)-t|=0$$

and

$$\lim_{\lambda \to \infty} \sup_{t \le T} \sup_{u \in S_{M,n}} |^{\lambda} \kappa_u(t) - {}^{\infty} \kappa_u(\delta_{\lambda}(t))| = 0$$

where

$$S_{M,n} := \{ u \in \mathfrak{U} \cap (\mathfrak{0}, M) : \widehat{Z}_u(\mathfrak{0}) \in E_n \}$$

Exchangeability of Levels

Fix $\lambda \leq \infty$ (and drop it from the notation). For M> 0, define

$$\mathfrak{F}_{t}^{M} := \sigma \Big\{ \sum_{u \in \mathfrak{U} \cap [M,\infty)} \delta_{(\hat{Z}_{u}(r),\kappa_{u}(r),u)}, \\ \sum_{u \in \mathfrak{U} \cap (0,M)} \delta_{(\hat{Z}_{u}(r),\kappa_{u}(r))} : r \leq t \Big\}$$

Lemma 5. We have

$$\mathfrak{L}\left[\sum_{u\in\mathfrak{U}\cap(0,M)}\delta_{(\widehat{Z}_{u}(t),\kappa_{u}(t),u)} \middle| \mathfrak{F}_{t}^{M}\right]$$

$$= \mathfrak{L}\left[\sum_{u\in\mathfrak{U}\cap(0,M)}\delta_{(\widehat{Z}_{u}(t),\kappa_{u}(t),\Upsilon_{u})} \middle| \mathfrak{F}_{t}^{M}\right]$$

for Υ_u conditionally iid uniform on (0, M) given \mathfrak{F}_t^{Ψ} .

Convergence of X^M

Note: $\mathfrak{F}_t^M \downarrow$ in M, so take $\mathfrak{F}_t^\infty := \bigcap_{M>0} \mathfrak{F}_t^M$.

Define

$$X_t^M := \frac{1}{M} \sum_{u \in \mathfrak{U} \cap (0,M)} \delta_{(\hat{Z}_u(t),\kappa_u(t))}$$

Theorem 6. For $h \in B(E \times \{0, 1\})$ with support in $E_n \times \{0, 1\}$,

$$X_t^M(h) \xrightarrow[M \to \infty]{} \mathsf{E}[X_t^1(h) | \mathfrak{F}_t^\infty] =: X_t(h)$$

almost surely and in L_p , $p \ge 1$.

10

Conditional Poisson Structure

Theorem 7.

$$\mathfrak{L}[\Psi_t \mid \mathfrak{F}_t^\infty] = \mathsf{Poisson}(X_t \times \ell_{(0,\infty)})$$

 $\begin{array}{l} \textit{Proof. Let } f \text{ be supported on} \\ E_n \times \{0, 1\} \times (0, M_0). \text{ For } M \geq M_0 \text{, Lemma 5} \\ \text{and Taylor give} \\ & \quad \mathbb{E}[e^{\theta \Psi_t(f)} | \mathfrak{F}_t^M] \\ & \quad = \mathbb{E}\Big[\exp\Big(\theta \sum_{u \in \mathbb{M} \cap (0, M)} f(\hat{Z}_u(t), \kappa_u(t), \Upsilon_u)\Big) \ \Big| \ \mathfrak{F}_t^M \Big] \\ \end{array}$

$$= \prod_{u \in \mathfrak{U}\cap(0,M)} \frac{1}{M} \int_0^M \exp(\theta f(\hat{Z}_u(t), \kappa_u(t), v)) dv$$

$$= \exp\left(\sum_{u \in \mathfrak{U}\cap(0,M)} \log\left(1 + \frac{1}{M} \int_0^\infty \left(e^{\theta f(\hat{Z}_u(t), \kappa_u(t), v)} - 1\right) dv\right)\right)$$

$$= \exp\left(X_t^M\left(\int_0^\infty \left(e^{\theta f(\cdot, \cdot, v)} - 1\right) dv + O\left(\frac{1}{M}\right)\right)\right)$$

$$\to \exp\left(X_t\left(\int_0^\infty \left(e^{\theta f(\cdot, \cdot, v)} - 1\right) dv\right)\right)$$

Proof of Theorem 6

By Lemma 5,

$$\begin{split} \mathsf{E}[X_t^1(h)|\mathfrak{F}_t^M] \\ &= \mathsf{E}\bigg[\sum_{u\in\mathfrak{U}\cap(0,M)} \mathbb{1}_{u<1}h(\hat{Z}_u(t),\kappa_u(t)) \ \Big| \ \mathfrak{F}_t^M\bigg] \\ &= \mathsf{E}\bigg[\sum_{u\in\mathfrak{U}\cap(0,M)} \mathbb{1}_{\Upsilon_u<1}h(\hat{Z}_u(t),\kappa_u(t)) \ \Big| \ \mathfrak{F}_t^M\bigg] \\ &= \frac{1}{M}\sum_{u\in\mathfrak{U}\cap(0,M)} h(\hat{Z}_u(t),\kappa_u(t)) \\ &= X_t^M(h) \end{split}$$

But, $\mathbf{E}[X_t^1(h)|\mathfrak{F}_t^M]$ is a backwards martingale in $M \in (0,\infty]$, so

$$X_t^M(h) = \mathsf{E}[X_t^1(h)|\mathfrak{F}_t^M] \to \mathsf{E}[X_t^1(h)|\mathfrak{F}_t^\infty]$$

9

An Itô Identity

Say that

$$M_{u}^{f}(t) := f(\hat{Z}_{u}(t)) - f(\hat{Z}_{u}(0)) - \int_{0}^{t} \hat{A}f(\hat{Z}_{u}(s))ds$$

is a martingale. Then, we have the identity

$$\begin{aligned} X_{t}^{M}(fg) - X_{0}^{M}(fg) - \int_{0}^{t} X_{s}^{M}((\hat{A}f)g) ds \\ &= \frac{1}{M} \sum_{u \in \mathfrak{U} \cap (0,M)} \int_{0}^{t} g(\kappa_{u}(s-)) dM_{u}^{f}(s) \\ &+ \frac{1}{M} \sum_{\substack{u,v \in \mathfrak{U} \cap (0,M) \\ u > v}} \int_{0}^{t} (f(\hat{Z}_{v}(s-))g(\kappa_{v}(s-)) - f(\hat{Z}_{u}(s-))g(\kappa_{u}(s-))) dV_{uv}(s) \end{aligned}$$

(with V_{uv} appropriately defined for $\lambda = \infty$). Claim 8. This last term is an \mathfrak{F}_t^M -martingale.

Martingale Problem

For M = 1, the identity gives

$$X_t^1(fg) - X_0^1(fg) - \int_0^t X_s^1((\hat{A}f)g) ds$$

an \mathfrak{F}_t^1 -martingale. If $X_t := \mathsf{E}[X_t^1(\cdot)|\mathfrak{F}_t^\infty]$ exists as a "nice" process, a well-known result gives

$$X_t(fg) - X_0(fg) - \int_0^t X_s((\hat{A}f)g) ds$$

an \mathfrak{F}_t^∞ -martingale.

Formally, if $u(x,t)m(dx) = X_t(dx \times \{1\})$, then

$$\dot{u} = Au + \dot{M}$$

where \dot{M} is some martingale noise.

13

Brownian Case (B., 2002)

In the case

- $\lambda < \infty$;
- \hat{Z} , Z standard Brownian;
- *m* Lebesgue on $E = \mathbb{R}$;
- L_{uv} martingale local time at 0 of $\hat{Z}_u \hat{Z}_v$.

then

$$\dot{u} = \frac{1}{2}\Delta u + \sqrt{4\lambda u(1-u)}\dot{W}$$

for \dot{W} a space-time white noise.

$$\dot{u} = \frac{1}{2}\Delta u + \sqrt{u(1-u)}\dot{W}$$

Space-Time Scaling (Tribe, 1995)

has a compact support property. Define

$$L_t := \inf\{x : u(x,t) < 1\}$$

$$R_t := \sup\{x : u(x,t) > 0\}$$

Then, if $-\infty < L_t \le R_t < \infty$ at t = 0 then it holds for all $t \ge 0$.

Take a space-time scaling

$$\begin{split} v_t^{(n)}(x) &:= u_{n^2t}(nx) \\ \text{In the limit } n \to \infty, \ R_t^{(n)} - L_t^{(n)} \xrightarrow{p} 0 \text{ and } \\ R_t^{(n)} \xrightarrow{d} B_t. \end{split}$$

14

Another View of the Scaling

If $u_t(x)$ solves

$$\dot{u} = \frac{1}{2}\Delta u + \sqrt{u(1-u)}\dot{W}$$

then $v_t^{(n)}(x) = u_{n^2t}(nx)$ solves

$$\dot{v}^{(n)} = \frac{1}{2} \Delta v^{(n)} + \sqrt{n v^{(n)} \left(1 - v^{(n)}\right)} \dot{W}$$

Thus, Tribe's result is really:

Theorem 9. Define

 $^{\lambda}L_t := \inf\{x : ^{\lambda}X_t((-\infty, x) \times \{0\}) > 0\}$ $^{\lambda}R_t := \sup\{x : ^{\lambda}X_t((x, \infty) \times \{1\}) > 0\}$

Then, as $\lambda \to \infty$ in the Brownian case, both ${}^{\lambda}L_t$ and ${}^{\lambda}R_t$ converge to the same Brownian motion.

This begs the question, why not look at ${}^{\infty}L_t$ and ${}^{\infty}R_t$ directly?

17

But, Be Careful!

We've shown

- For each box $E_n \times \{0, 1\} \times (0, M)$, there is a family of time changes δ_{λ} . On each compact time interval as $\lambda \to \infty$, we have $\delta_{\lambda} \to id$ uniformly and eventually ${}^{\lambda}\Psi_t = {}^{\infty}\Psi_{\delta_{\lambda}(t)}$ on the box (and so ${}^{\lambda}X_t^M = {}^{\infty}X_{\delta_{\lambda}(t)}^M$ on E_n);
- For fixed λ , ${}^{\lambda}X_t^M(A) \to {}^{\lambda}X_t(A)$ as $M \to \infty$ for all compact A.

but we can't conclude ${}^\lambda X \to {}^\infty X$ in a sense that would give

$${}^{\lambda}L \to {}^{\infty}L \\ {}^{\lambda}R \to {}^{\infty}R$$

18

Interface Solutions of Lookdown Particle Systems, Part III: Interfaces of Fast-Interaction Models

Kevin A. Buhr

February 25, 2004