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General Lookdown Systems

Definition 1. Given a countable index set U,

a genealogy is a timed, directed graph

G ⊆ (0,∞) × U × U

For (t, u, v) ∈ G, we write u
t

−→
G

v.

Interpretation: Particles indexed by U have

initial types κ0
u ∈ {0,1}. At time t, particle u

looks (down) at particle v and copies its type

just prior to time t.

If G satisfies some axioms, then there exist

jump processes (càdlàg in the discrete

topology) started at κ0
u with

Gκu(t) =







Gκv(t−), if u
t

−→ v
Gκu(t−), otherwise
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Particle Motion with Dual

Let Z, Ẑ be continuous Markov on

interval E ⊆ R with semigroups Pt and P̂t

satisfying Pt1 = P̂t1 = 1 and the duality
∫

fPtg dm =
∫

gP̂tf dm

for all f, g ∈ pE and some diffuse Borel m with

0 < m(a, b) < ∞ for all a < b, a, b ∈ E.

Hypothesis 2. There exists En → E relatively

open in E with m(En) < ∞ and
∫

E
P̂z{σEn

≤ t}m(dz) < ∞

where

σA := inf{t ≥ 0 : Ẑ(t) ∈ A}

Note: The notation and framework borrow heavily
from (DEFKZ, 2000).
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An Interacting Particle System

Let ν0 be a measure on E × {0,1} with

ν0(· × {0,1}) = m, and take

Ψ0 :=
∑

u∈U

δ(Ẑ0
u ,κ0

u,u) ∼ Poisson
(

ν0 × `(0,∞)

)

Then, let Ẑu given Ψ0 be conditionally

independent copies of Ẑ each started at Ẑ0
u .

Finally, for a genealogy G satisfying the

axioms, define the system

GΨt :=
∑

u∈U

δ(Ẑu(t),Gκu(t),u)
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Particle Systems with Slow Local

Interactions (B., 2002)

Let Luv be a continuous additive functional of

(Ẑu, Ẑv) such that

Luv(s) − Luv(r) > 0 ⇐⇒

∃t ∈ (r, s) [Ẑu(t) = Ẑv(t)]

That is, Luv is a continuous, monotone

increasing processes that increases when (and

only when) Ẑu(t) = Ẑv(t).

For λ ∈ (0,∞), define

Gλ := {(t, u, v) : ∆Vuv(t) > 0, u > v}

where Vuv(t) := Nuv(λLuv(t)).
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Particle Systems with Fast Local

Interactions (DEFKZ, 2000)

Let

[u]t := {v ∈ U : Ẑu(t) = Ẑv(t)}

It turns out [u]t always has a minimum.

Denote it by buct.

Define

G∞ = {(t, u, buct) : buct 6= u, u ∈ U, t > 0}

If type processes exists, they satisfy

Ẑu(t) = Ẑv(t) =⇒ κu(t) = κv(t)

so, in spirit, this is really the genealogy

{(t, u, v) : Ẑu(t) = Ẑv(t), u > v}

6

Existence of Gλ Systems, λ ≤ ∞

Theorem 3. The genealogies Gλ, λ ≤ ∞

satisfy the axioms. That is, there exist càdlàg

type processes λκu for these genealogies and

càdlàg particle systems

λΨt :=
∑

u∈U

δ(Ẑu(t),λκu(t),u)
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J1 Convergence

Theorem 4. For n ∈ N, M > 0, there exists a

family (δλ)λ∈(0,∞) of time changes such that

for all T > 0,

lim
λ→∞

sup
t≤T

|δλ(t) − t| = 0

and

lim
λ→∞

sup
t≤T

sup
u∈SM,n

|λκu(t) −
∞κu(δλ(t))| = 0

where

SM,n := {u ∈ U ∩ (0, M) : Ẑu(0) ∈ En}
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Exchangeability of Levels

Fix λ ≤ ∞ (and drop it from the notation).

For M > 0, define

FM
t := σ

{

∑

u∈U∩[M,∞)
δ(Ẑu(r),κu(r),u),

∑

u∈U∩(0,M)
δ(Ẑu(r),κu(r))

: r ≤ t
}

Lemma 5. We have

L

[

∑

u∈U∩(0,M)

δ(Ẑu(t),κu(t),u)

∣

∣

∣

∣

FM
t

]

= L

[

∑

u∈U∩(0,M)

δ(Ẑu(t),κu(t),Υu)

∣

∣

∣

∣

FM
t

]

for Υu conditionally iid uniform on (0, M)

given FΨ
t .
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Convergence of XM

Note: FM
t ↓ in M , so take F∞

t :=
⋂

M>0 FM
t .

Define

XM
t :=

1

M

∑

u∈U∩(0,M)

δ(Ẑu(t),κu(t))

Theorem 6. For h ∈ B(E × {0,1}) with

support in En × {0,1},

XM
t (h) −→

M→∞
E[X1

t (h)|F∞
t ] =: Xt(h)

almost surely and in Lp, p ≥ 1.
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Proof of Theorem 6

By Lemma 5,

E[X1
t (h)|FM

t ]

= E

[

∑

u∈U∩(0,M)

1u<1h(Ẑu(t), κu(t))

∣

∣

∣

∣

∣

FM
t

]

= E

[

∑

u∈U∩(0,M)

1Υu<1h(Ẑu(t), κu(t))

∣

∣

∣

∣

∣

FM
t

]

=
1

M

∑

u∈U∩(0,M)

h(Ẑu(t), κu(t))

= XM
t (h)

But, E[X1
t (h)|FM

t ] is a backwards martingale

in M ∈ (0,∞], so

XM
t (h) = E[X1

t (h)|FM
t ] → E[X1

t (h)|F∞
t ]
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Conditional Poisson Structure

Theorem 7.

L[Ψt | F∞
t ] = Poisson(Xt × `(0,∞))

Proof. Let f be supported on
En × {0,1} × (0, M0). For M ≥ M0, Lemma 5
and Taylor give

E[eθΨt(f)|FM
t ]

= E

[

exp

(

θ
∑

u∈U∩(0,M)

f(Ẑu(t), κu(t),Υu)

)
∣

∣

∣
FM

t

]

=
∏

u∈U∩(0,M)

1

M

∫ M

0

exp(θf(Ẑu(t), κu(t), v))dv

= exp

(

∑

u∈U∩(0,M)

log

(

1+

1

M

∫ ∞

0

(

eθf(Ẑu(t),κu(t),v) − 1

)

dv

))

= exp

(

XM
t

(

∫ ∞

0

(

eθf(·,·,v) − 1

)

dv + O

(

1

M

)))

→ exp

(

Xt

(

∫ ∞

0

(

eθf(·,·,v) − 1

)

dv

))
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An Itô Identity

Say that

M f
u(t) := f(Ẑu(t)) − f(Ẑu(0)) −

∫ t

0

Âf(Ẑu(s))ds

is a martingale. Then, we have the identity

XM
t (fg) − XM

0 (fg) −

∫ t

0

XM
s ((Âf)g)ds

=
1

M

∑

u∈U∩(0,M)

∫ t

0

g(κu(s−))dM f
u(s)

+
1

M

∑

u,v∈U∩(0,M)
u>v

∫ t

0

(

f(Ẑv(s−))g(κv(s−))−

f(Ẑu(s−))g(κu(s−))
)

dVuv(s)

(with Vuv appropriately defined for λ = ∞).

Claim 8. This last term is an FM
t -martingale.
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Martingale Problem

For M = 1, the identity gives

X1
t (fg) − X1

0(fg) −
∫ t

0
X1

s ((Âf)g)ds

an F1
t -martingale. If Xt := E[X1

t (·)|F∞
t ] exists

as a “nice” process, a well-known result gives

Xt(fg) − X0(fg) −
∫ t

0
Xs((Âf)g)ds

an F∞
t -martingale.

Formally, if u(x, t)m(dx) = Xt(dx × {1}), then

u̇ = Au + Ṁ

where Ṁ is some martingale noise.
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Brownian Case (B., 2002)

In the case

• λ < ∞;

• Ẑ, Z standard Brownian;

• m Lebesgue on E = R;

• Luv martingale local time at 0 of Ẑu − Ẑv.

then

u̇ =
1

2
∆u +

√

4λu(1 − u)Ẇ

for Ẇ a space-time white noise.
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Space-Time Scaling (Tribe, 1995)

The SPDE given by

u̇ =
1

2
∆u +

√

u(1 − u)Ẇ

has a compact support property. Define

Lt := inf{x : u(x, t) < 1}

Rt := sup{x : u(x, t) > 0}

Then, if −∞ < Lt ≤ Rt < ∞ at t = 0 then it

holds for all t ≥ 0.

Take a space-time scaling

v
(n)
t (x) := un2t(nx)

In the limit n → ∞, R
(n)
t − L

(n)
t

p
−→ 0 and

R
(n)
t

d
−→ Bt.
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Another View of the Scaling

If ut(x) solves

u̇ =
1

2
∆u +

√

u(1 − u)Ẇ

then v
(n)
t (x) = un2t(nx) solves

v̇(n) =
1

2
∆v(n) +

√

nv(n)
(

1 − v(n)
)

Ẇ

Thus, Tribe’s result is really:

Theorem 9. Define

λLt := inf{x : λXt((−∞, x) × {0}) > 0}
λRt := sup{x : λXt((x,∞) × {1}) > 0}

Then, as λ → ∞ in the Brownian case, both
λLt and λRt converge to the same Brownian

motion.

This begs the question, why not look at ∞Lt

and ∞Rt directly?

17

But, Be Careful!

We’ve shown

• For each box En × {0,1} × (0, M), there is a family
of time changes δλ. On each compact time
interval as λ → ∞, we have δλ → id uniformly and
eventually λΨt = ∞Ψδλ(t) on the box (and so
λXM

t = ∞XM
δλ(t)

on En);

• For fixed λ, λXM
t (A) → λXt(A) as M → ∞ for all

compact A.

but we can’t conclude λX → ∞X in a sense

that would give

λL → ∞L
λR → ∞R
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