General Lookdown Systems

Definition 1. Given a countable index set \mathfrak{U} , a genealogy is a timed, directed graph

$$\mathfrak{G}\subseteq (0,\infty) imes\mathfrak{U} imes\mathfrak{U}$$

For $(t, u, v) \in \mathfrak{G}$, we write $u \xrightarrow{t} v$.

Interpretation: Particles indexed by $\mathfrak U$ have initial types $\kappa_u^0\in\mathbb K$. At time t, particle u looks (down) at particle v and copies its type just prior to time t.

Biological Interpretation: In population with fixed size, particle v gives birth at time t to an offspring (with the same type) that replaces particle u in the population.

Note: Often $\mathfrak{U}\subseteq (0,\infty)$ and $u\stackrel{t}{\longrightarrow} v$ only if u>v, justifying the term look*down*.

2

Lookdown Particle Systems with Local Interactions

Kevin A. Buhr

December 3, 2003

1

Moran Model

Simple n-particle Moran model:

$$\mathfrak{U} = \{1, \dots, n\}$$

$$\mathfrak{G} = \{(t, u, v) : \Delta N_{uv}(t) = 1, u \neq v\}$$

Countable construction of Fleming-Viot process (Donnelly & Kurtz, 1996):

$$\mathfrak{U} = \mathbb{N}$$

$$\mathfrak{G} = \{(t, u, v) : \Delta N_{uv}(2t) = 1, u > v\}$$

Axioms (A0)–(A3)

$$(A0)$$
 $u \rightarrow u$

$$(A1) u \xrightarrow{t} v_1, u \xrightarrow{t} v_2 \Longrightarrow v_1 = v_2$$

$$(A2\uparrow) \qquad u \xrightarrow{t_n} v_n, \ t_n \uparrow t \qquad \Longrightarrow \qquad \exists v \left[u \xrightarrow{t} v \right]$$

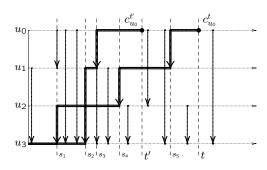
$$(A3\uparrow) \qquad u \xrightarrow{t} v \quad \implies \quad (\exists s < t)[v \xrightarrow{(s,t)}]$$

This isn't enough to guarantee \mathfrak{G} is meaningful, but it allows us to construct...

3

Ancestral Chains

Definition 2. The t-chain of u (written ${}^{\mathfrak{G}}c_u^t$) indicates the ancestral path backward in time of particle u starting at t.



$$\begin{split} c_{u_0}^t &= u_0 \xrightarrow{s_5} u_1 \xrightarrow{s_4} u_2 \xrightarrow{s_1} u_3 \\ c_{u_0}^{t'} &= u_0 \xrightarrow{s_3} u_1 \xrightarrow{s_2} u_3 \end{split}$$

,

Defining Types

If a chain exists and is finite

$$c_{u_0}^{t_0} = u_0 \xrightarrow{t_1} \dots \xrightarrow{t_m} u_m$$

we write $\bar{c}_{u_0}^{t_0}:=u_m$ and define $\kappa_{u_0}(t_0):=\kappa_{\bar{c}_{u_0}^{t_0}}^0$. We also write

$$\beta_{u_0}^{t_0}(t) := \begin{cases} u_k & \forall t \in [t_{k+1}, t_k), \ 0 \le k \le m-1 \\ u_m & \forall t \in [0, t_m) \end{cases}$$

6

Axioms (A) Imply Chains Exist

Lemma 3. Axioms (A0), (A1), $(A2\uparrow)$, and $(A3\uparrow)$ imply for every $u_0 \in \mathfrak{U}$ and $t_0 > 0$ there exists a (possibly infinite) unique chain

$$c_{u_0}^{t_0} = u_0 \xrightarrow{t_1} u_1 \xrightarrow{t_2} \dots$$

with $t_0 \ge t_1 > t_2 > \dots > 0$ and $u_{k-1} \ne u_k$.

Proof. Write $au_u=\{t:u\stackrel{t}{\longrightarrow}\}$. If $au_{u_0}\cap (0,t_0]$ is empty, final chain is $c^{t_0}_{u_0}=u_0$. Otherwise, let t_1 be its maximum (by $(A2\uparrow)$), and chain-so-far is

$$u \stackrel{t_1}{\longrightarrow} u_1$$

Once we have

$$u_0 \stackrel{t_1}{\longrightarrow} \dots \stackrel{t_m}{\longrightarrow} u_m$$

for $t_0 \geq t_1 > \cdots > t_m > 0$, if $\tau_{u_m} \cap (0,t_m)$ is empty, that's final chain. Otherwise, let t_{m+1} be its maximum (by $(A2\uparrow)$, $(A3\uparrow)$), and extend chain with $u_m \stackrel{t_{m+1}}{\longrightarrow} u_{m+1}$. \square

Axioms (B) and (C)

- (B) All chains are finite.
- (C) For $t_n \to t$ monotone, $\bar{c}_u^{t_n}$ is eventually constant (and equal to \bar{c}_u^t if $t_n \downarrow$).

Obviously, (B) implies type processes exist while (C) implies they are càdlàg (in the discrete topology and so càdlàg with well separated jumps).

The Specifics: Motion and Dual

Let Z, \widehat{Z} be continuous Markov on internal $E\subseteq \mathbb{R}$ with semigroups P_t and \widehat{P}_t satisfying $P_t1=\widehat{P}_t1=1$ and the duality

$$\int f P_t g \, dm = \int g \hat{P}_t f \, dm$$

for all $f, g \in p\mathcal{E}$ and some diffuse Borel m with $0 < m(a,b) < \infty$ for all a < b, $a,b \in E$.

Hypothesis 4. There exists $E_n \to E$ relatively open in E with $m(E_n) < \infty$ and

$$\int_{E} \hat{\mathsf{P}}^{z} \{ \sigma_{E_{n}} \le t \} m(dz) < \infty$$

where

$$\sigma_A := \inf\{t \geq 0 : \widehat{Z}(t) \in A\}$$

Note: The notation and framework borrow heavily from (DEFKZ, 2000).

9

The Specifics: A Particle System

Let ν_0 be a measure on $E \times \mathbb{K}$ with $\nu_0(\cdot \times \mathbb{K}) = m$, and take

$$\Psi_0 := \sum_{u \in \mathfrak{U}} \delta_{(\widehat{Z}_u^0, \kappa_u^0, u)} \sim \mathsf{Poisson}\left(\nu_0 \times \ell_{(0, \infty)}\right)$$

Finally, let \hat{Z}_u given Ψ_0 be conditionally independent copies of \hat{Z} each started at \hat{Z}_u^0 .

Lemma 5. For t > 0, M > 0, $n \in \mathbb{N}$, we have

$$\{v \in \mathfrak{U} \cap (0, M) : \widehat{Z}_v[0, t] \cap E_n \neq \emptyset\}$$

almost surely finite.

10

Particle Systems with Slow Local Interactions (B, 2002)

For a fixed, finite α -potential on $E \times E$, let L_{uv} be the continuous additive functional of (\hat{Z}_u, \hat{Z}_v) having that potential. We assume that for r < s, we have

$$L_{uv}(s) - L_{uv}(r) > 0 \iff$$

 $\exists t \in (r, s) [\hat{Z}_u(t) = \hat{Z}_v(t)]$

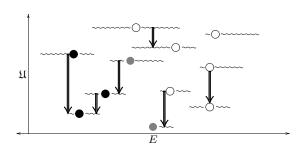
That is, L_{uv} is a continuous, monotone increasing processes that increases when (and only when) $\hat{Z}_u(t) = \hat{Z}_v(t)$. Moreover, by Lemma 5, $L_u := \sum_{v < u} L_{uv}$ is continuous.

Define

$$\mathfrak{G}^{(\lambda)} := \{(t, u, v) : \Delta V_{uv}(t) > 0, u > v\}$$
 where $V_{uv}(t) := N_{uv}(\lambda L_{uv}(t))$.

Note: As L_u is continuous, (A1) is immediate. In fact, $|\tau_u \cap (0,t)| < \infty$, so (A1), $(A2\uparrow)$, and $(A3\uparrow)$ all hold.

A Picture



Particle Systems with Fast Local Interactions (DEFKZ, 2000)

Define

$$\mathfrak{G}^{(\infty)} := \{ (t, u, v) : \hat{Z}_u(t) = \hat{Z}_v(t), u > v, \\ \hat{Z}_u(t) = \hat{Z}_w(t) \Rightarrow w > v \}$$

Lemma 5 implies:

- we don't miss a lookdown;
- if $t_n \uparrow t$, $u \xrightarrow{t_n} v_n$, then $\{v_n\}$ finite implies $\exists w [u \xrightarrow{t_n} w (i.o. \ n)]$ and by continuity $\widehat{Z}_u(t) = \widehat{Z}_w(t)$ implying $u \xrightarrow{t} \exists v$ (i.e., $(A2\uparrow)$ holds);

All Chains Are Finite

Lemma 6. Almost surely, all chains ${}^{\mathfrak{G}}c_u^{t_0}$ are finite (for $\mathfrak{G} = \mathfrak{G}^{(\lambda)}$ or $\mathfrak{G}^{(\infty)}$).

 $\mathit{Proof.}\ (\mathfrak{G}^{(\lambda)}\ \mathsf{case})\ \mathsf{Fix}\ t_0$ and define the backwards filtration

$$\widehat{\mathfrak{F}}_r := \sigma\{\mathfrak{U}, \widehat{Z}_u(s), V_{uv}(s-), V_{uv}(s) : u > v \in \mathfrak{U}, s \in [t_0 - r, t_0]\}$$

For any $\widehat{\mathfrak{F}}_0$ -measurable $u_0\in\mathfrak{U}$, write its (finite or infinite) chain

$$c_{u_0}^{t_0} = u_0 \xrightarrow{t_1} u_1 \xrightarrow{t_2} \dots$$

Note $\tau_k = t_0 - t_k$ are (strictly increasing) $\hat{\mathfrak{F}}_r$ -stopping times:

$$au_1 = \inf\left\{s: \sum_{v \in \mathfrak{U} \cap (0,u_0)} \Delta V_{u_0,v}(t_0-s) = 1
ight\}$$

is a stopping time, so u_1 is $\widehat{\mathfrak{F}}_{ au_1}$ -measurable. Thus,

$$au_2 = \inf\left\{s > au_1: \sum_{v \in \mathfrak{U} \cap (0,u_1)} \Delta V_{u_1,v}(t_0-s) = 1
ight\}$$

is a stopping time, so u_2 is $\widehat{\mathfrak{F}}_{ au_2}$ -measurable, and so on.

14

All Chains Are Finite

Proof. (cont.) By continuity of \hat{Z}_u , strong Markov property, and duality relation,

$$Z(r) := \hat{Z}_{\beta_{n_0}^{t_0}(t_0-r)}(t_0-r)$$

defined on $(0,t_0 \wedge \lim \tau_k)$ is a continuous Markov copy of Z. In particular, its path is contained in some E_n implying, by Lemma 5, that $\tau_k = \infty$ for some k and the chain is finite.

Now, on an almost sure set where c_u^q finite for all $u \in \mathfrak{U}$ and $q \in \mathbb{Q}_+$, for arbitrary $t \in (0,\infty)$, either $u \stackrel{t}{\longrightarrow} u'$ implying $u' \stackrel{}{\longrightarrow}$ on $(t-\epsilon,t)$ by $(A3\uparrow)$, or $u \stackrel{t}{\longrightarrow}$ implying $u \stackrel{}{\longrightarrow}$ on $(t-\epsilon,t)$ by $(A2\uparrow)$. Take $q \in \mathbb{Q}_+ \cap (t-\epsilon,t)$, and $c_u^t = u \stackrel{t}{\longrightarrow} c_{u'}^q$ or $c_u^t = c_u^q$ respectively. \square

Path Regularity

For $\mathfrak{G}^{(\lambda)}$, as $\tau_u \cap (0,t)$ finite, c_u^t (and so \bar{c}_u^t) changes at well separated time points. Therefore, $\kappa_u(t) := \kappa_{\bar{c}_u^t}^0$ are càdlàg jump processes with well separated jumps.

For $\mathfrak{G}^{(\infty)}$, it turns out that \bar{c}_u^t (but not necessarily c_u^t) changes at well separated time points too, so $\kappa_u(t)$ are càdlàg jump processes with well separated jumps.

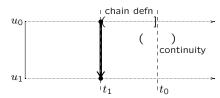
Path Regularity of $\mathfrak{G}^{(\infty)}$

Path Regularity of $\mathfrak{G}^{(\infty)}$

Say we have

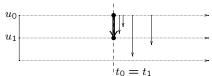
$$c_{u_0}^{t_0} = u_0 \xrightarrow{t_1} \dots \xrightarrow{t_m} u_m$$

• Case 1: $t_0 > t_1$



Therefore, $c_{u_0}^t = c_{u_0}^{t_0}$ is constant in a neighborhood of t_0 .

• Case 2: $t_0 = t_1$, right regularity



Consider

$$S = \{w < u_0 : \hat{Z}_w(t_0) = \hat{Z}_{u_0}(t_0)\}$$

By continuity and Lemma 5, $\exists (r,s) \ni t_0$ such that no particle in S contacts a particle in $(\mathfrak{U} \cap (0,u_0)) \setminus S$.

Then, for any $t \in (t_0, s)$, we have the finite chain

$$c_{u_0}^t = u_0 \xrightarrow{s_1} w_1 \longrightarrow \dots \xrightarrow{s_k} w_k$$
$$\xrightarrow{t_0} u_1 \longrightarrow \dots$$

$$\text{for } \{w_i\} \subseteq S. \text{ So, } \overline{c}_{u_0}^t = \overline{c}_{u_1}^{t_0} = \overline{c}_{u_0}^{t_0}.$$

1.9

No Simultaneous Jumps

Lemma 7. Almost surely, $\Delta \bar{c}_u^t \neq 0$ and $\Delta \bar{c}_v^t \neq 0$ implies u = v.

It is a consequence of:

Lemma 8 (Lemma 2.1 of DEFKZ). If Y is a copy of \hat{Z} started at $q \ll m$ and (T, V) is a $[0, \infty) \times E$ -valued r.v. independent of Y, then

$$P(Y(T) = V) = 0$$

Proof of Lemma 7. Roughly, if T is a jump time of \bar{c}_w^t , and $V:=\hat{Z}_v(\bar{c}_w^t)$ is the location of any particle, then for all u>v,w, $Y:=\hat{Z}_u$ is independent of (T,V).

As a consequence, a particle u will never hit any other particle when a lower-level \bar{c}_w^t jumps. In particular, \bar{c}_u^t can't jump. \square

Previous Constructions

- For Z_u , \widehat{Z}_u Brownian with L_{uv} the martingale local time at 0 of $\widehat{Z}_u \widehat{Z}_v$, the $\mathfrak{G}^{(\lambda)}$ -process was constructed in (B., 2002);
- For general Z_u , \hat{Z}_u (not necessarily continuous), the analogue of the $\mathfrak{G}^{(\infty)}$ -process was constructed in (DEFKZ, 2000), but only almost surely at each fixed t.

17

J_1 Convergence

Write

$$\Psi^{(\lambda)}(t) := \sum_{u \in \mathfrak{U}} \delta_{(\hat{Z}_u(t), \lambda_{\kappa_u}(t), u)}
\Psi^{(\infty)}(t) := \sum_{u \in \mathfrak{U}} \delta_{(\hat{Z}_u(t), \infty_{\kappa_u}(t), u)}$$

Theorem 9. Almost surely, for all $n \in \mathbb{N}$ and M > 0,

$$\psi^{(\lambda)}\Big|_{E_n\times\mathbb{K}\times(0,M)} \xrightarrow{\lambda\to\infty} \psi^{(\infty)}\Big|_{E_n\times\mathbb{K}\times(0,M)}$$

in the J_1 topology on $D_{E \times \mathbb{K} \times (0,\infty)}$, particle by particle.