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Lessons From Last Week #1

0

K

The infinite-density, ordered model embeds

finite-density, symmetric models of all

densities.

Ψt =
∑

u∈U

δ(Ẑu(t),κu(t),u)

If

XK
t =

∑

u∈U, u<K

δ(Ẑu(t),κu(t))

then

XK =d K-density symmetric model
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Lessons From Last Week #2

The limiting location type measure

Xt = lim
K→∞

1

K
XK
t = lim

K→∞

1

K

∑

u∈U, u<K

δ(Ẑu(t),κu(t))

• “exists” as an Lp and a.s. limit;

• is the weak limit of the (mass-scaled)

K-density, symmetric model as K → ∞;

• satisfies

L
(

Ψt

∣

∣

∣ FXt

)

= Poisson(Xt × `R+
)

The “essence” of the infinite-density,

continuum-sites, stepping-stone model is Xt.

It is generated by (or generates) a

conditionally Poisson particle system.
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Two-Type, No Mutation Case

Let E = {0 ≡ ,1 ≡ } with no mutation.

Then Xt(· × {1}) ≤ Xt(· ×E) = `R, so let

Xt(dx× {1}) = ut(x)dx.

K

1

0

ut(x)
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Mueller-Tribe SPDE

u̇ =
1

2
∆u+ |2γu(1 − u)|1/2 Ẇ

That is, writing ut(f) =
∫

f(x)ut(x)dx, we

have

ut(f) = u0(f) +
1

2

∫ t

0
ut(f

′′)ds+M
f
t

[Mf ]t = 2γ
∫ t

0

∫

R

f2(x)us(x) (1 − us(x)) dxds

This is the X-measure for the infinite-density

model with

• two types, no mutation;

• ind BMs at rate θ = 1;

• ordered pair interacting at γ
2dL

0
t (Ẑu − Ẑv).
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Space-Time Scaling (Tribe 1995)

u̇ =
1

2
∆u+ |2γu(1 − u)|1/2 Ẇ

Start all zero to left of origin, all ones to

right: u0 = 1[0,∞).

Define space-time scaling:

v
(n)
t (x) = un2t(nx)

In the limit n→ ∞, there is a one-point

interface whose motion converges to rate 1

Brownian motion.
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Another View of the Scaling

If ut(x) solves

u̇ =
1

2
∆u+ |2γu(1 − u)|1/2 Ẇ

then v
(n)
t (x) = un2t(nx) solves

v̇(n) =
1

2
∆v(n) +

∣

∣

∣2nγv(n)
(

1 − v(n)
)
∣

∣

∣

1/2
Ẇ

Ψ at rate γ
γ→∞

f

Ψ at rate ∞

f

X at rate γ

g g

“interface”

space-time

rescaling

Brownian motion

• Does γ-lookdown system converge to
immediate-lookdown system as γ → ∞?

• Is g ◦ f a “continuous” function of the particle
system?
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Immediate-Interaction Model

0

• at time 0, all to left, all to right of
origin;

• independent, rate 1 horizontal Brownian
motions;

• immediate lookdowns: Ẑu(t) = Ẑv(t)
implies κu(t) = κv(t).

Reference: Donnelly, Evans, Fleischmann, Kurtz, and Zhou.
“Continuum-sites stepping-stone models, coalescing exchangeable
partitions, and random trees.” Annals of Probability,
28(3):1063–1110, 2000.
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Interface Persists

We never get a to the right of a because

of the . . .

Ancestral Trajectory of Particles

Track a particle at time t = T backward to

t = 0. Follow each lookdown.

t=T

t=0

Note that the type can’t change: it can only

change at a lookdown, and we follow those.
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Interface Persists

Suppose at time t = T , there’s a to the

right of a . Then:

• follow ancestral trajectories back to t = 0;

• at t = 0, is left of , so they crossed;

• at crossing, there’s a lookdown making

them the same type, a contradiction.

Let’s write:

Lt = sup{Ẑu(t) : κu(t) = 0 ≡ }

Rt = inf{Ẑu(t) : κu(t) = 1 ≡ }

and note Lt ≤ Rt.
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Interface Is a Point

At each time t, particles are Poisson(`R × `R+
)

in location/level space.

Suppose interface is larger than a point:

Lt Rt

There are an infinite number of particles

between Lt and Rt. So what are their types?

Lemma 1. For all a < b and t ≥ 0 a.s., there

are an infinite number of particles in (a, b) in

a neighborhood of t.
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Interface Process Is Continuous

Lemma 2. For all a < b and t ≥ 0 a.s., in a

neighborhood of t, a particle confined to (a, b)

does not change its type.

Fix t ≥ 0. For any ε > 0, take intervals

(Lt − ε, Lt) and (Lt, Lt + ε).

LtLt − ε Lt + ε

In t-nbd given by lemma, |Lr − Lt| < ε.
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Interface Inherits Structure

Lemma 3. For all t ≥ 0,

L
(

Ψt

∣

∣

∣ FLt

)

= ΠLt

where Πx ≡ Poisson
(

`(−∞,x) × δ0 + `[x,∞) × δ1
)

.

Lt
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Proof of Lemma 3

Enough to show that FLt ⊆ FXt and

Xt = {all to left of Lt, all to right}.

Then,

E
[

h(Ψt)
∣

∣

∣ FLt

]

= E
[

E
[

h(Ψt)
∣

∣

∣ FXt

]
∣

∣

∣ FLt

]

= E

[
∫

h(ψ)ΠXt(dψ)

∣

∣

∣

∣

FLt

]

=
∫

h(ψ)ΠLt(dψ)
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What Structure Is Inherited?

Space/type reversal of particle system has

same distribution:

0

0

Therefore, Lt =
d −Lt.
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What Structure Is Inherited?

Conditional distribution Ψt+·

∣

∣

∣ FLt is same as

Ψ· shifted spatially.

Lt

Therefore, Lt has stationary, independent

increments.
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What is L?

The process L has:

• continuous paths;

• spatially symmetric distribution;

• stationary, independent increments.

So, L is a continuous, driftless Lévy process.

Sounds like a Brownian motion!
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This Technique Generalizes

Let the particle motion (Ẑ, P̂z) be any

continuous, Borel process with dual (Z,Pz):
∫

fPtgdm =

∫

gP̂tfdm

for m having support on an interval of R. Lay

down initial particles using marginal location

measure m.

Under some regularity conditions,

• ancestral trajectory is a copy of Z;

• initial interface persists as a point Lt;

• process L is continuous;

• L
(

Ψt

∣

∣

∣ FLt

)

= ΠLt;

• L is a time-homogeneous Markov process.
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Markov Property

Since Lt ≡ h(Ψt) and Ψt is a

time-homogeneous Markov process with

semigroup Pt,

E
[

f(Lt)
∣

∣

∣ FLs

]

= E
[

E
[

f ◦ h(Ψt)
∣

∣

∣ FΨ
s

]
∣

∣

∣ FLs

]

= E
[

Pt−sf ◦ h(Ψs)
∣

∣

∣ FLs

]

=

∫

Pt−sf ◦ h(ψ)ΠLs(dψ)

so Lt is time-homogeneous with semigroup,

PLt f(x) =
∫

Ptf ◦ h(ψ)Πx(dψ)
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A Duality Result

Theorem 4. Pl(Lt > y) = Py(Zt < l)

Proof. Follows immediately by a duality result

in DEFKZ, 2000.

Corollary 5. For Ẑ standard Brownian, the

interface is standard Brownian.

Corollary 6. If Z has generator A and L has

generator AL, then
∫

f ′ALg+

∫

g′Af = 0
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General Diffusion

A general diffusion with generator

Âf(x) =
a(x)

2
f ′′(x) + b(x)f ′(x)

is “usually” self-dual with respect to its speed

measure

m(dx) = m0e
2
∫ x
0
b(y)
a(y)

dy
a−1(x)dx

So, by Corollary 6,

ALg(x) =
a(x)

2
g′′(x) +

(

a′(x)

2
− b(x)

)

g′(x)

In particular, if a(x) ≡ a > 0, general b(x) then

AL is diffusion with same diffusion rate and

opposite drift.
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Interesting Examples

Ornstein-Uhlenbeck

• m(dx) = e−x
2/2dx

• Generators:

Âf(x) =
1

2
f ′′(x) −

1

2
xf ′(x)

ÂLg(x) =
1

2
g′′(x) +

1

2
xg′(x)

• Processes:

Zt = e−t/2
(

Z0 +B
(

et − 1
))

Lt = et/2
(

L0 +B
(

1 − e−t
))

• SPDEs:

Zt = Z0 +Bt −
∫ t

0

1

2
Zsds

Lt = L0 +Bt +
∫ t

0

1

2
Lsds
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Interesting Examples

Stochastic Exponential

• m(dx) = x−(2c+1)dx

• Generators:

Âf(x) =
1

2
x2f ′′(x) +

(

1

2
− c

)

xf ′(x)

ÂLg(x) =
1

2
x2g′′(x) +

(

1

2
+ c

)

xg′(x)

• Processes:

Zt = Z0e
Bt−ct

Lt = L0e
Bt+ct

• SPDEs:

Zt = Z0 +

∫ t

0
ZsdBs +

(

1

2
− c

)
∫ t

0
Zsds

Lt = L0 +

∫ t

0
LsdBs +

(

1

2
+ c

)
∫ t

0
Lsds
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Another Interesting Connection

The deterministic solution of

u̇ = Au

u(0, x) = 1x≥L0

is u(x, t) = Px(Zt ≥ 0) = P0(Lt ≤ x).

That is ut(·) is the distribution function of Lt.
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