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Lessons From Last Week #2

The limiting location type measure
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e ‘exists” as an Ly and a.s. limit;

e is the weak limit of the (mass-scaled)
K-density, symmetric model as K — oo;

e satisfies

S(‘Ut ‘ gftX) = Poisson(X¢ x ¢g_ )

The “essence” of the infinite-density,

continuum-sites, stepping-stone model is X;.

It is generated by (or generates) a
conditionally Poisson particle system.

Lessons From Last Week #1
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The infinite-density, ordered model embeds
finite-density, symmetric models of all
densities.
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Two-Type, No Mutation Case

Let E={0=0,1 = @} with no mutation.

Then X:(- x {1}) < Xi(- x E) = £, so let
Xi(dr x {1}) = u(z)dz.
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Mueller-Tribe SPDE

1 .
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That is, writing u:(f) = [ f(z)u(z)dz, we
have
wh) = uo(f) + 5 [ uis")ds + Mif
t
7l =27 [ [ P@us@) (1 = us(e)) dads

This is the X-measure for the infinite-density
model with

e two types, no mutation;
e ind BMs at rate § = 1;

e ordered pair interacting at 3dL(Z. — Zu).
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Another View of the Scaling

If us(x) solves
1 .
U= EAu + |2vyu(1 — u)|1/2 w
(n) —
then v/ (z) = u,2,(nx) solves

o) = %Avw +[2ny@ (1 - o) Y2

W at rate y —"" 1 at rate oo
lf [f
X at rate v

lg space-time g

rescaling

“interface” Brownian motion

e Does y-lookdown system converge to
immediate-lookdown system as v — oco?

e Is go f a “continuous" function of the particle
system?

Space-Time Scaling (Tribe 1995)

1 .
U= EAU + |2vyu(1l — u)|1/2 w
Start all zero to left of origin, all ones to

right: ug = 1[0’00).

Define space-time scaling:

Ut(n) (z) = u,2,(nx)

In the limit n — oo, there is a one-point
interface whose motion converges to rate 1
Brownian motion.

Immediate-Interaction Model

O °®
0

e at time 0, all O to left, all @ to right of
origin;

e independent, rate 1 horizontal Brownian
motions;

e immediate lookdowns: Z,(t) = Zy(t)
implies kyu(t) = Ko(t).

Reference: Donnelly, Evans, Fleischmann, Kurtz, and Zhou.
“Continuum-sites stepping-stone models, coalescing exchangeable
partitions, and random trees.” Annals of Probability,
28(3):1063-1110, 2000.



Interface Persists

We never get a O to the right of a @ because
of the...

Ancestral Trajectory of Particles

Track a particle at time ¢t =T backward to
t = 0. Follow each lookdown.

t=T
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t=0

Note that the type can’t change: it can only
change at a lookdown, and we follow those.
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Interface Is a Point

At each time ¢, particles are Poisson({r x £R+)
in location/level space.

Suppose interface is larger than a point:
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There are an infinite number of particles
between L; and R;. So what are their types?

Lemma 1. For all a < b andt > 0 a.s., there
are an infinite number of particles in (a,b) in
a neighborhood of t.
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Interface Persists

Suppose at time t =T, there's a O to the
right of a @. Then:

e follow ancestral trajectories back to ¢t = 0;
e att =0, O is left of @, so they crossed;

e at crossing, there’'s a lookdown making
them the same type, a contradiction.
Let's write:

Ly = sup{Zy(t) : ku(t) = 0=0}
Ry = inf{Zu(t) : ku(t) =1 = @}
and note L; < Ry.
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Interface Process Is Continuous

Lemma 2. For alla<bandt>0 a.s., in a
neighborhood of t, a particle confined to (a,b)
does not change its type.

Fix t > 0. For any e > 0, take intervals
(Lt -6 Lt) and (Lt7Lt + 6)'

N.m
MON

Li—e Ly Li+e
In t-nbd given by lemma, |L, — Ly| < e.
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Interface Inherits Structure

Lemma 3. For all t > 0,

£(Wt‘gf> == I'ILt

where Ny = Poisson (5(—00,95) X 00 + L[z 00) X 51>.

Ly
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What Structure Is Inherited?

Space/type reversal of particle system has
same distribution:
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Therefore, Ly =% —L;.
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Proof of Lemma 3

Enough to show that 7 C § and
Xy ={all O to left of L, all @ to right}.

Then,
E [n(wo) | 3F] = E[E [n(W0) | 3] | 3F]
= e[ [ nw)nx, (@) | ]
= [ RN, (de)
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What Structure Is Inherited?

Conditional distribution W, . StL is same as
W. shifted spatially.

Ly

Therefore, L; has stationary, independent
increments.
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What is L?

The process L has:

e continuous paths;
e spatially symmetric distribution;

e stationary, independent increments.

So, L is a continuous, driftless Lévy process.
Sounds like a Brownian motion!
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Markov Property

Since Ly = h(W) and W; is a
time-homogeneous Markov process with
semigroup P,

E[f(L) |35 =E[E[fohwy) |3Y] | 3F]
= E[Prsf o (W) | §E]
= [ Pisf o h(¥)N 1 (d0)
so L; is time-homogeneous with semigroup,

PFf(2) = [ Puf o h(¥)Ma(dy)
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This Technique Generalizes

Let the particle motion (Z,P?) be any
continuous, Borel process with dual (Z, P?):

[ 1Pgdm = [ gPrfdm

for m having support on an interval of R. Lay
down initial particles using marginal location
measure m.

Under some regularity conditions,

e ancestral trajectory is a copy of Z;
e initial interface persists as a point Ly;

process L is continuous;

o(wi|§) = 1

L is a time-homogeneous Markov process.
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A Duality Result

Theorem 4. PYL; > y) =PY¥(Z; < 1)

Proof. Follows immediately by a duality result
in DEFKZ, 2000. L]
Corollary 5. For Z standard Brownian, the

interface is standard Brownian.

Corollary 6. If Z has generator A and L has
generator Ay, then

[ farg+ [dar=0
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General Diffusion

A general diffusion with generator

gy =D 1) + b))

is “usually” self-dual with respect to its speed
measure

2 b(y)
m(dz) = moe2 10 s ¥q1(2)dw

So, by Corollary 6,

a’(x)
2

Ara) = “Dg' @)+ (U5 <) ) o @)

In particular, if a(z) = a > 0, general b(z) then
A is diffusion with same diffusion rate and
opposite drift.
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Interesting Examples

Stochastic Exponential

o m(dr) =z~ ety
e Generators:
Aj@) = 20" @) + (5 - ) o @
- 1 1
ALg(e) = 50%9" () + (5 + ¢ ) 2/ (@)
e Processes:

Jp = ZoeBtict
L = LoePitet

e SPDEs:
t 1 t
7, = Zo-{—/ ZsdBs + (——c>/ Zsds
0 2 0

t 1 t
Li = Lo +/ LedBs + (— +c) / Leds
0 2 0
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Interesting Examples

Ornstein-Uhlenbeck

m(dx) = e=%/2dy

e Generators:

Af@) = of"(@) ~ Sof (@)

Ag@@) = 2g"() + Had/ ()

Processes:

Zy = e /2 (ZO +B (et - 1))
Li=e"2(Lo+ B(1-¢))

SPDEs:

t1
Zt=Zo—|—Bt—/O§ZSds

t1
Lt:Lo—l—Bt—l—/o SLads
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Another Interesting Connection

The deterministic solution of
uw = Au
u(0,z) = 1,51,
is u(z, t) = P¥(Z; > 0) = PO(L; < ).

That is us(-) is the distribution function of L.
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