An Ordered
Particle Construction
of the Fleming-Viot

Process

Moran Model (1958)

Genetic interpretation:

e finite population of individuals;
e each individual has a genetic “type”;

e types mutate;
Kevin A. Buhr
e reproduction through matched

birth/death events.
March 20, 2002

Brownian Moran Model
Brownian Moran Model

Fix population size n, mutation rate 8 > 0, 10-particle Moran model
and reproduction rate A > 0.

Let (X1(¢),...,Xn(t)) be the types of the
individuals on R?, and LTFBL: 1

e X;(0) with distribution v on RY;

type
0
1

e W; standard Brownian motions;

e N;; rate one Poisson counting processes. "

For 1 <j3<n, let

X;(t) = X;(0) + VOW;(t)
+ > /Ot (Xi(s_) - Xj(s—)) dNj; (%8) ime

1<i<n
i7£g




Large-Population Limit

50-particle “large-population” approximation

time

The Martingale Problem

Let Z; be a My (R%)-valued process, and write
Z(¢) = [ pdZy.

1. Zg = v with probability one;
2. For ¢ in a sufficiently rich class,
Zi($) = Z " 7. (8n8) ds + MP
t(d’) 0(¢)+0 s\o ¢ s+ t

where Mt‘/’ is a continuous, square
integrable martingale with

(M?,0%),

= [ (7:(6%) ~ Zu(8)2()) ds

Fleming-Viot Process, 1979

Showed that a similar model converged to a
diffusion process by the “usual method.”

Proved that:

1. sequence of prelimiting models is tight;

2. each limit point solves a martingale
problem;

3. every solution to the MGP has the same
distribution.

Comparison to

Super Brownian Motion

In both cases, we have:

24(9) = Zo($) + /Ot Zs ($2¢) ds + M

The difference is:
e (MO), =2 [ (26 - (2(9))?)ds

(SBM) <M¢>t = )\/Ot Zs(¢2)ds



Comparison to
Super Brownian Motion

Super Brownian Motion

FV is SBM with global population control mechanism.
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Moran vs. Ordered Models

Usual Moran Model: for 1 <j<mn,
X;(t) = X;(0) + VoW, (t)
t
—|— Z /(;) (Xi(s_) - Xj(S-)) dNij (%S)

1<i<n
17

Ordered Model: for j € N,
X;(t) = X;(0) + Vow;(t)
t
+ 3 [ (Xi(s=) = X5(s-)) ANy (xs)

1<j

In the usual Moran model, indices have no
special meaning. In the ordered model, they
establish a “pecking order” or “rank.”
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Ordered Particle Model

e Dawson & Hochberg, 1982
— appeared implicitly in particle
construction of moment measures;

— used as tool to study support
properties.
e Donnelly & Kurtz, 1996

— more explicit construction;

— used to study Fleming-Viot process
with very general mutation;

— used to study genealogy, ergodicity,
sample-path properties.
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This Ordering Is Special

20
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type
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time

Q: Is this a realization of the Moran model
with n = 3 or the first three particles of the
(infinite) ordered model?
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type

Answer: it’'s the Moran model! No, it’s the ordered model!
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Coupling Theorem
Coupling the Two Models

Theorem 1. For each n, there exists a
probability space carrying models (1), (II), and

Vi €N, X;(t) = X;(0) + VoW;(t) a permutation-valued process
o ¢
+ / Xi(s—) — X;(s=)) dNi; (A _
; | (Kils=) = Xi(s=)) ANy (hs) S(w,8): {1,...,n} < {1,...,n}

with distribution
Vi<n, X;(t) =X;(0) + VOW;(t)

t
+ > / (Ri(s—) = Kj(s-)) AN (39) ¢ 7 v !
1<i<n /0 P(tha ‘Xj(o)aWj(T>aNij(T)’TSt) ol

7] nl

(5= o | 50150 00 <)

(€1y)
- . - for all o € Sy, such that
Vi>n, X;t)=X;(0)+VoW;(t)

+3 / (Fi(s-) = K;(s-)) AN (Ns) Xj(w,t) = {Xﬂw,t,j)(w”f)’ jsm

1<i<j )?j(w,t), j > n.
for all w e 2, t > 0.
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Outline of Proof

Proof of Theorem 1. (B, 2002), (Donnelly &
Kurtz, 1998).

e start with a random permutation >(0),
interpreting > ;(t) (rather than j itself) as
the particle's “rank” for j < mn;

e when two particles i,57 < n interact, higher
rank particle copies lower rank particle
and—half the time—they swap ranks;

e if you pretend the ranks aren’'t there, it
looks like model (II), but if you index
particles by their (changing!) ranks, it
looks like model (I).
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Empirical Measure

Define empirical measure
1 n
Z;L = — Z 5X-(t)
nj=1 ]
and write

@) = Y 60G(0)
j=1

Why might Z*(¢) be of interest?
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Consequences of Theorem

For each fixed n,

1. Define empirical measures
n __ 1 = Z7n __ 1 -
Zy = ;j;l ox;(t) 4t = ;j;l 5)”(j(t)
Then Z" =2 Z" = Moran(n) as processes.

2. Define

§ =0 {Z Xnp1(r), Xpqa(r), ... 7 <t}
Then, for all t > 0 and o € Sy,

L[(Xo1 (), -- -, Xon(8)) | B7]
= L[(X1(®), ..., Xn(t)) | 3%
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A Backward Martingale

Define
3? =0 {Z;LaXn+1(T)aXn+2(T)a i < t}
and write §7° = Np>1 37

Lemma 2 (MGBCT). IfE|X|P < oo for
some p > 1, then

el | 7] - £fx |7

almost surely and in Lyp.
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Limiting Empirical Measure

Lemma 3.

E[¢(X2() | §F] = 2(¢)

Proof. For all 1 < j<n,
Ele(X1(1) | 87| = E[¢(X;(®)) | 37

1

= E [—

J

= Z{($)

" 6(X; (1)) ‘ s?]
=1

Therefore, for bounded ¢,

ZP(8) = Zi(#) = E[¢(X1(1)) | 35

almost surely and in Ly for all p > 1.
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Quadratic Variation

By It6,
MP™ = Z7(6) — Z8($) — / 70 (5") ds
o]
iy JRCIOAS
n = 0

D /O (@(Xi(s=)) = 6(X;(s-))) dNi;(hs)

1<i<j<n
SO
t
M = 28) - 20(8) - [ 2. (49 ds
t
= im {710) - z5(0) - [ 2 (40") s}
0

= lim M¢"

n—0o0
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Martingale Problem

Since
X1(t) = X1(0) + VoW1 (t)
by Itd, we have

9 t
SOM) - 6(xa(0) - 3 [ ¢ (r(e)as

=V [ ¢ ()W)
0
is an {F}}-martingale, and so
E[¢(X1() | §7°] — E[¢(X1(0)) | §&]
-5 | el 5l

is an {§¢°}-martingale. Therefore,
t
268) = 20(0) + | 7 (86") ds+ ¢
0

for some {§®}-martingale M¢.
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Quadratic Variation

Theorem 4.

1. M®™ js an {§}}-martingale;

2. For all t,
(Mo, M¢7”>t LY 4,
for
A=) [ (Zo(0) — 2e(8)260)) ds

3. (M9, MY) = A.
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Final Martingale Problem

The process Z; satisfies

74(6) = 20(8) + [ 2 (36 ds + M

for M? a continuous, square integrable
martingale such that

(M8, M%), =2 [ (Zo(90) — 2:(6)20)) ds
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