An Ordered Particle Construction of the Fleming-Viot Process

Kevin A. Buhr

March 20, 2002

Moran Model (1958)

Genetic interpretation:

- finite population of individuals;
- each individual has a genetic "type";
- types mutate;
- reproduction through matched birth/death events.

Brownian Moran Model

Fix population size n, mutation rate $\theta > 0$, and reproduction rate $\lambda > 0$.

Let $(X_1(t), ..., X_n(t))$ be the types of the individuals on \mathbb{R}^d , and LTFBI:

- $X_i(0)$ with distribution ν on \mathbb{R}^d ;
- \bullet W_i standard Brownian motions;
- ullet N_{ij} rate one Poisson counting processes.

For $1 \le j \le n$, let

$$X_{j}(t) = X_{j}(0) + \sqrt{\theta}W_{j}(t) + \sum_{\substack{1 \le i \le n \\ i \ne j}} \int_{0}^{t} \left(X_{i}(s-) - X_{j}(s-) \right) dN_{ij} \left(\frac{\lambda}{2} s \right)$$

Brownian Moran Model

10-particle Moran model

Large-Population Limit

50-particle "large-population" approximation

Fleming-Viot Process, 1979

Showed that a similar model converged to a diffusion process by the "usual method."

Proved that:

- 1. sequence of prelimiting models is tight;
- 2. each limit point solves a martingale problem;
- 3. every solution to the MGP has the same distribution.

The Martingale Problem

5

7

Let Z_t be a $\mathfrak{M}_1(\mathbb{R}^d)$ -valued process, and write $Z_t(\phi) = \int \phi \, dZ_t$.

- 1. $Z_0 = \nu$ with probability one;
- 2. For ϕ in a sufficiently rich class,

$$Z_t(\phi) = Z_0(\phi) + \int_0^t Z_s\left(\frac{\theta}{2}\Delta\phi\right)ds + M_t^{\phi}$$

where M_t^{ϕ} is a continuous, square integrable martingale with

$$\left\langle M^{\phi}, M^{\psi} \right\rangle_{t}$$

= $\lambda \int_{0}^{t} \left(Z_{s}(\phi \psi) - Z_{s}(\phi) Z_{s}(\psi) \right) ds$

Comparison to Super Brownian Motion

In both cases, we have:

$$Z_t(\phi) = Z_0(\phi) + \int_0^t Z_s\left(\frac{\theta}{2}\Delta\phi\right)ds + M_t^{\phi}$$

The difference is:

(FV)
$$\left\langle M^{\phi} \right\rangle_t = \lambda \int_0^t \left(Z_s(\phi^2) - (Z_s(\phi))^2 \right) ds$$
(SBM) $\left\langle M^{\phi} \right\rangle_t = \lambda \int_0^t Z_s(\phi^2) ds$

6

8

Comparison to Super Brownian Motion

Super Brownian Motion

Fleming-Viot Process

FV is SBM with global population control mechanism.

9

Ordered Particle Model

- Dawson & Hochberg, 1982
 - appeared implicitly in particle construction of moment measures;
 - used as tool to study support properties.
- Donnelly & Kurtz, 1996
 - more explicit construction;
 - used to study Fleming-Viot process with very general mutation;
 - used to study genealogy, ergodicity, sample-path properties.

10

Moran vs. Ordered Models

Usual Moran Model: for $1 \le j \le n$,

$$X_{j}(t) = X_{j}(0) + \sqrt{\theta}W_{j}(t)$$

$$+ \sum_{\substack{1 \leq i \leq n \\ i \neq j}} \int_{0}^{t} \left(X_{i}(s-) - X_{j}(s-) \right) dN_{ij} \left(\frac{\lambda}{2} s \right)$$

Ordered Model: for $j \in \mathbb{N}$,

$$X_j(t) = X_j(0) + \sqrt{\theta}W_j(t)$$

+
$$\sum_{i < j} \int_0^t \left(X_i(s-) - X_j(s-) \right) dN_{ij}(\lambda s)$$

In the usual Moran model, indices have no special meaning. In the ordered model, they establish a "pecking order" or "rank."

This Ordering Is Special

Q: Is this a realization of the Moran model with n=3 or the first three particles of the (infinite) ordered model?

Answer: it's the Moran model!

No, it's the ordered model!

13

Coupling the Two Models

(I)
$$\begin{cases} \forall j \in \mathbb{N}, \quad X_{j}(t) = X_{j}(0) + \sqrt{\theta}W_{j}(t) \\ + \sum_{i < j} \int_{0}^{t} (X_{i}(s-) - X_{j}(s-)) dN_{ij}(\lambda s) \end{cases}$$

$$\begin{cases} \forall j \leq n, \quad \tilde{X}_{j}(t) = \tilde{X}_{j}(0) + \sqrt{\theta}\tilde{W}_{j}(t) \\ + \sum_{\substack{1 \leq i \leq n \\ i \neq j}} \int_{0}^{t} (\tilde{X}_{i}(s-) - \tilde{X}_{j}(s-)) d\tilde{N}_{ij}(\frac{\lambda}{2}s) \end{cases}$$

$$\forall j > n, \quad \tilde{X}_{j}(t) = \tilde{X}_{j}(0) + \sqrt{\theta}\tilde{W}_{j}(t) \\ + \sum_{1 \leq i < j} \int_{0}^{t} (\tilde{X}_{i}(s-) - \tilde{X}_{j}(s-)) d\tilde{N}_{ij}(\lambda s) \end{cases}$$

Coupling Theorem

Theorem 1. For each n, there exists a probability space carrying models (I), (II), and a permutation-valued process

$$\Sigma(\omega,t): \{1,\ldots,n\} \leftrightarrow \{1,\ldots,n\}$$

with distribution

$$\begin{split} &\mathsf{P} \Big(\Sigma_t = \sigma \; \Big| \; X_j(0), W_j(r), N_{ij}(r), r \leq t \Big) = \\ &\mathsf{P} \Big(\Sigma_t = \sigma \; \Big| \; \tilde{X}_j(0), \tilde{W}_j(r), \tilde{N}_{ij}(r), r \leq t \Big) = \frac{1}{n!} \end{split}$$

for all $\sigma \in S_n$ such that

$$X_{j}(\omega,t) = \begin{cases} \tilde{X}_{\Sigma(\omega,t,j)}(\omega,t), & j \leq n; \\ \tilde{X}_{j}(\omega,t), & j > n. \end{cases}$$

for all $\omega \in \Omega$, $t \geq 0$.

Outline of Proof

Proof of Theorem 1. (B, 2002), (Donnelly & Kurtz, 1998).

- start with a random permutation $\Sigma(0)$, interpreting $\Sigma_j(t)$ (rather than j itself) as the particle's "rank" for $j \leq n$;
- when two particles $i, j \leq n$ interact, higher rank particle copies lower rank particle and—half the time—they swap ranks;
- if you pretend the ranks aren't there, it looks like model (II), but if you index particles by their (changing!) ranks, it looks like model (I).

П

17

Consequences of Theorem

For each fixed n,

1. Define empirical measures

$$Z_t^n = \frac{1}{n} \sum_{j=1}^n \delta_{X_j(t)} \quad \tilde{Z}_t^n = \frac{1}{n} \sum_{j=1}^n \delta_{\tilde{X}_j(t)}$$

Then $Z^n = d \tilde{Z}^n \equiv Moran(n)$ as processes.

2. Define

$$\mathfrak{F}_t^n = \sigma\left\{Z_r^n, X_{n+1}(r), X_{n+2}(r), \dots : r \le t\right\}$$

Then, for all $t \geq 0$ and $\sigma \in S_n$,

$$\mathcal{L}\left[\left(X_{\sigma_1}(t),\ldots,X_{\sigma_n}(t)\right)\mid \mathfrak{F}_t^n\right] \\ = \mathcal{L}\left[\left(X_1(t),\ldots,X_n(t)\right)\mid \mathfrak{F}_t^n\right]$$

18

Empirical Measure

Define empirical measure

$$Z_t^n = \frac{1}{n} \sum_{i=1}^n \delta_{X_j(t)}$$

and write

$$Z_t^n(\phi) = \frac{1}{n} \sum_{j=1}^n \phi(X_j(t))$$

Why might $Z_t^n(\phi)$ be of interest?

A Backward Martingale

Define

$$\mathfrak{F}^n_t=\sigma\left\{Z^n_r,X_{n+1}(r),X_{n+2}(r),\ldots:r\leq t\right\}$$
 and write $\mathfrak{F}^\infty_t=\cap_{n\geq 1}\mathfrak{F}^n_t.$

Lemma 2 (MGBCT). If $E|X|^p < \infty$ for some $p \ge 1$, then

$$\mathsf{E}\!\left[X \bigm| \mathfrak{F}^n_t\right] \to \mathsf{E}\!\left[X \bigm| \mathfrak{F}^\infty_t\right]$$

almost surely and in L_p .

Limiting Empirical Measure

Lemma 3.

$$\mathsf{E}\big[\phi(X_1(t))\,\,\big|\,\,\mathfrak{F}^n_t\big]=Z^n_t(\phi)$$

Proof. For all $1 \le j \le n$,

$$\begin{split} \mathsf{E} \Big[\phi(X_1(t)) \; \Big| \; \mathfrak{F}^n_t \Big] &= \mathsf{E} \Big[\phi(X_j(t)) \; \Big| \; \mathfrak{F}^n_t \Big] \\ &= \mathsf{E} \left[\frac{1}{n} \sum_{j=1}^n \phi(X_j(t)) \; \bigg| \; \mathfrak{F}^n_t \right] \\ &= Z^n_t(\phi) \end{split}$$

Therefore, for bounded ϕ ,

$$Z^n_t(\phi)\to Z_t(\phi)\equiv \mathsf{E}\big[\phi(X_1(t))\ \Big|\ \mathfrak{F}_t^\infty\big]$$
 almost surely and in L_p for all $p\ge 1$.

 $p \geq 1$

Martingale Problem

Since

21

$$X_1(t) = X_1(0) + \sqrt{\theta}W_1(t)$$

by Itô, we have

$$\phi(X_1(t)) - \phi(X_1(0)) - \frac{\theta}{2} \int_0^t \phi''(X_1(s)) ds$$
$$= \sqrt{\theta} \int_0^t \phi'(X_1(s)) dW_1(s)$$

is an $\{\mathfrak{F}^1_t\}$ -martingale, and so

$$egin{aligned} \mathsf{E}ig[\phi(X_1(t)) ig| \, \mathfrak{F}_t^\inftyig] - \mathsf{E}ig[\phi(X_1(0)) ig| \, \mathfrak{F}_0^\inftyig] \ &- rac{ heta}{2} \int_0^t \mathsf{E}ig[\phi''(X_1(s)) ig| \, \mathfrak{F}_s^\inftyig] ds \end{aligned}$$

is an $\{\mathfrak{F}_t^\infty\}$ -martingale. Therefore,

$$Z_t(\phi) = Z_0(\phi) + \int_0^t Z_s\left(\frac{\theta}{2}\phi''\right)ds + M_t^{\phi}$$

for some $\{\mathfrak{F}_t^\infty\}$ -martingale M^ϕ .

22

Quadratic Variation

By Itô,

$$\begin{split} M_t^{\phi,n} &= Z_t^n(\phi) - Z_0^n(\phi) - \int_0^t Z_s^n\left(\frac{\theta}{2}\phi''\right) ds \\ &= \frac{\sqrt{\theta}}{n} \sum_{j=1}^n \int_0^t \phi'(X_j(s)) dW_j(s) \\ &+ \frac{1}{n} \sum_{1 \le i < j \le n} \int_0^t \left(\phi(X_i(s-)) - \phi(X_j(s-))\right) dN_{ij}(\lambda s) \end{split}$$

so

$$\begin{split} M_t^{\phi} &= Z_t(\phi) - Z_0(\phi) - \int_0^t Z_s\left(\frac{\theta}{2}\phi''\right) ds \\ &= \lim_{n \to \infty} \left\{ Z_t^n(\phi) - Z_0^n(\phi) - \int_0^t Z_s^n\left(\frac{\theta}{2}\phi''\right) ds \right\} \\ &= \lim_{n \to \infty} M_t^{\phi,n} \end{split}$$

Quadratic Variation

Theorem 4.

- 1. $M^{\phi,n}$ is an $\{\mathfrak{F}^n_t\}$ -martingale;
- 2. For all t,

$$\langle M^{\phi,n}, M^{\psi,n} \rangle_t \xrightarrow{L^1} A_t$$

for

$$A_t \equiv \lambda \int_0^t \left(Z_s(\phi \psi) - Z_s(\phi) Z_s(\psi) \right) ds$$

3.
$$\langle M^{\phi}, M^{\psi} \rangle = A$$
.

Final Martingale Problem

The process \mathcal{Z}_t satisfies

$$Z_t(\phi) = Z_0(\phi) + \int_0^t Z_s\left(\frac{\theta}{2}\phi''\right)ds + M_t^{\phi}$$

for M^ϕ a continuous, square integrable martingale such that

$$\left\langle M^{\phi}, M^{\psi} \right\rangle_t = \lambda \int_0^t \left(Z_s(\phi \psi) - Z_s(\phi) Z_s(\psi) \right) ds$$