MATH 263 ASSIGNMENT 9 SOLUTIONS

1) Let $\vec{F}=(x-y z) \hat{\imath}+(y+x z) \hat{\jmath}+(z+2 x y) \hat{k}$ and let
S_{1} be the portion of the cylinder $x^{2}+y^{2}=2$ that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$
S_{2} be the portion of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies outside the cylinder $x^{2}+y^{2}=2$
V be the volume bounded by S_{1} and S_{2}
Compute
a) $\iint_{S_{1}} \vec{F} \cdot \hat{n} d S \quad$ with \hat{n} pointing inward
b) $\iiint_{V} \vec{\nabla} \cdot F d V$
c) $\iint_{S_{2}} \vec{F} \cdot \hat{n} d S \quad$ with \hat{n} pointing outward

Use the divergence theorem to answer at least one of parts (a), (b) and (c).
Solution. Observe that $\vec{\nabla} \cdot \vec{F}=3$. So

$$
\iiint_{V} \vec{\nabla} \cdot F d V=\iiint_{V} 3 d V
$$

The horizontal cross-section of V at height z is a washer with outer radius $\sqrt{4-z^{2}}$ (determined by the equation of the sphere) and inner radius $\sqrt{2}$ (determined by the equation of the cylinder). So the crosssection has area $\pi\left(4-z^{2}\right)-\pi 2=\pi\left(2-z^{2}\right)$. On the intersection of the sphere and cylinder $z^{2}=4-2=2$ so

$$
\iiint_{V} \vec{\nabla} \cdot F d V=3 \int_{-\sqrt{2}}^{\sqrt{2}} \pi\left(2-z^{2}\right) d z=6 \pi \int_{0}^{\sqrt{2}}\left(2-z^{2}\right) d z=6 \pi\left(2 \sqrt{2}-\frac{2^{3 / 2}}{3}\right)=8 \sqrt{2} \pi
$$

On the cylindrical surface, using (surprise!) cylindrical coordinates,

$$
\begin{aligned}
\hat{n} & =-(\cos \theta \hat{\imath}+\sin \theta \hat{\boldsymbol{\jmath}}) \\
d S & =\sqrt{2} d \theta d z \\
\vec{F} \cdot \hat{n} & =\sqrt{2}(\cos \theta-z \sin \theta)(-\cos \theta)+\sqrt{2}(\sin \theta+z \cos \theta)(-\sin \theta)=-\sqrt{2}
\end{aligned}
$$

so

$$
\iint_{S_{1}} \vec{F} \cdot \hat{n} d S=-2 \int_{-\sqrt{2}}^{\sqrt{2}} d z \int_{0}^{2 \pi} d \theta=-8 \sqrt{2} \pi
$$

By the divergence theorem

$$
\iint_{S_{2}} \vec{F} \cdot \hat{n} d S=\iiint_{V} \vec{\nabla} \cdot F d V-\iint_{S_{1}} \vec{F} \cdot \hat{n} d S=16 \sqrt{2} \pi
$$

2) Evaluate the integral $\iiint_{S} \vec{F} \cdot \hat{n} d S$, where $\vec{F}=(x, y, 1)$ and S is the surface $z=1-x^{2}-y^{2}$, for $x^{2}+y^{2} \leq 1$, by two methods.
a) First, by direct computation of the surface integral.
b) Second, by using the divergence theorem.

Solution. a) Let $G(x, y, z)=x^{2}+y^{2}+z$. Then

$$
\begin{aligned}
\hat{n} d S & =\frac{\vec{\nabla} G}{\nabla G \cdot \mathbf{k}} d x d y=\frac{2 x \hat{\boldsymbol{\imath}}+2 y \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}}{1} d x d y=(2 x \hat{\boldsymbol{\imath}}+2 y \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}) d x d y \\
\vec{F} \cdot \hat{n} d S & =[x \hat{\mathbf{\imath}}+y \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}] \cdot[2 x \hat{\mathbf{\imath}}+2 y \hat{\mathbf{\jmath}}+\hat{\mathbf{k}}] d x d y=\left[2 x^{2}+2 y^{2}+1\right] d x d y
\end{aligned}
$$

Switching to polar coordinates

$$
\iiint_{S} \vec{F} \cdot \hat{n} d S=\int_{0}^{1} d r r \int_{0}^{2 \pi} d \theta\left(2 r^{2}+1\right)=2 \pi\left[\frac{1}{2} r^{4}+\frac{1}{2} r^{2}\right]_{0}^{1}=2 \pi
$$

b) Call the solid $0 \leq z \leq 1-x^{2}-y^{2}$, V. Let D denote the bottom surface of V. The disk D has radius 1 , area $\pi, z=0$ the outward normal $-\hat{\mathbf{k}}$, so that

$$
\iint_{D} \vec{F} \cdot \hat{n} d S=-\iint_{D} \vec{F} \cdot \hat{\mathbf{k}} d x d y=-\iint_{D} d x d y=-\pi
$$

As

$$
\vec{\nabla} \cdot \vec{F}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(1)=2
$$

the divergence theorem gives

$$
\begin{aligned}
\iint_{\mathcal{S}} \vec{F} \cdot \hat{n} d S & =\iiint_{V} \vec{\nabla} \cdot \vec{F} d V-\iint_{D} \vec{F} \cdot \hat{n} d S=\iiint_{V} 2 d V-(-\pi) \\
& =\pi+2 \int_{0}^{1} d z \iint_{x^{2}+y^{2} \leq 1-z} d x d y=\pi+2 \int_{0}^{1} d z \pi(1-z) \\
& =\pi+2 \pi\left[z-\frac{1}{2} z^{2}\right]_{0}^{1}=2 \pi
\end{aligned}
$$

3a) By applying the divergence theorem to $\vec{F}=\phi \vec{a}$, where \vec{a} is an arbitrary constant vector, show that

$$
\iiint_{V} \vec{\nabla} \phi d V=\iint_{\partial V} \phi \hat{n} d S
$$

b) Show that the centroid $(\bar{x}, \bar{y}, \bar{z})$ of a solid V is given by

$$
(\bar{x}, \bar{y}, \bar{z})=\frac{1}{2 \operatorname{vol}(V)} \iint_{\partial V}\left(x^{2}+y^{2}+z^{2}\right) \hat{n} d S
$$

Solution. a) The divergence of $\phi \vec{a}$ is $\vec{\nabla} \phi \cdot \vec{a}$. So, by the divergence theorem,

$$
\iint_{\partial V} \phi \vec{a} \cdot \hat{n} d S=\iiint_{V} \vec{\nabla} \phi \cdot \vec{a} d V \Longrightarrow\left[\iint_{\partial V} \phi \hat{n} d S-\iiint_{V} \vec{\nabla} \phi d V\right] \cdot \vec{a}=0
$$

This is true for all vectors \vec{a}. So

$$
\iint_{\partial V} \phi \hat{n} d S-\iiint_{V} \vec{\nabla} \phi d V=0
$$

b) By part a, with $\phi=x^{2}+y^{2}+z^{2}$,

$$
\frac{1}{2 \operatorname{vol}(V)} \iint_{\partial V}\left(x^{2}+y^{2}+z^{2}\right) \hat{n} d S=\frac{1}{2 \operatorname{vol}(V)} \iiint_{V}(2 x \hat{\boldsymbol{\imath}}+2 y \hat{\boldsymbol{\jmath}}+2 z \hat{\mathbf{k}}) d V=(\bar{x}, \bar{y}, \bar{z})
$$

4) Find the flux of $\vec{F}=(y+x z) \hat{\boldsymbol{\imath}}+(y+y z) \hat{\boldsymbol{\jmath}}-\left(2 x+z^{2}\right) \hat{\mathbf{k}}$ upward through the first octant part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
Solution. Let $V=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq a^{2}, x \geq 0, y \geq 0, z \geq 0\right\}$. The ∂V consists of an $x=0$ face, a $y=0$ face, a $z=0$ face and the first octant part of the sphere. Call the latter S. Then

$$
\begin{aligned}
& \iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\iiint_{V}[z+1+z-2 z] d V=\iiint_{V} d V=\frac{1}{8} \frac{4}{3} \pi a^{3}=\frac{1}{6} \pi a^{3} \\
& \iint_{\substack{x=0 \\
\text { face }}} \vec{F} \cdot(-\hat{\boldsymbol{\imath}}) d y d z=\iint_{\substack{x=0 \\
\text { face }}}(-y) d y d z=-\int_{0}^{a} d r r \int_{0}^{\pi / 2} d \theta r \sin \theta=-\int_{0}^{a} r^{2} d r=-\frac{a^{3}}{3} \\
& \iint_{\substack{y=0 \\
\text { face }}} \vec{F} \cdot(-\hat{\boldsymbol{\jmath}}) d x d z=0 \\
& \iint_{\substack{z=0 \\
\text { face }}} \vec{F} \cdot(-\hat{\mathbf{k}}) d x d y=\iint_{\substack{z=0 \\
\text { face }}}(2 x) d x d y=\frac{2 a^{3}}{3}
\end{aligned}
$$

By the divergence theorem

$$
\iint_{s} \vec{F} \cdot \hat{n} d x d y=\iiint_{V} \vec{\nabla} \cdot \vec{F} d V-\iint_{\substack{x=0 \\ \text { face }}} \vec{F} \cdot(-\hat{\boldsymbol{\imath}}) d y d z-\iint_{\substack{y=0 \\ \text { face }}} \vec{F} \cdot(-\hat{\boldsymbol{\jmath}}) d x d z-\iint_{\substack{z=0 \\ \text { face }}} \vec{F} \cdot(-\hat{\mathbf{k}}) d x d y=\left[\frac{\pi}{6}-\frac{1}{3}\right] a^{3}
$$

5) Let $\vec{E}(\vec{r})$ be the electric field due to a charge configuration that has density $\rho(\vec{r})$. Gauss' law states that, if V is any solid in \mathbb{R}^{3} with surface ∂V, then the electric flux

$$
\iint_{\partial V} \vec{E} \cdot \hat{n} d S=4 \pi Q \quad \text { where } \quad Q=\iiint_{V} \rho d V
$$

is the total charge in V. Here, as usual, \hat{n} is the outward pointing unit normal to ∂V. Show that

$$
\vec{\nabla} \cdot \vec{E}(\vec{r})=4 \pi \rho(\vec{r})
$$

for all \vec{r} in \mathbb{R}^{3}. This is one of Maxwell's equations. Assume that $\vec{\nabla} \cdot \vec{E}(\vec{r})$ and $\rho(\vec{r})$ are well-defined and continuous everywhere.
Solution. By the divergence theorem

$$
\iint_{\partial V} \vec{E} \cdot \hat{n} d S=\iiint_{V} \vec{\nabla} \cdot \vec{E} d V
$$

So by Gauss' law

$$
\iiint_{V} \vec{\nabla} \cdot \vec{E} d V=4 \pi \iiint_{V} \rho d V \quad \Rightarrow \quad \iiint_{V}[\vec{\nabla} \cdot \vec{E}-4 \pi \rho] d V=0
$$

This is true for all solids V for which the divergence theorem applies. If there were some point in \mathbb{R}^{3} for which $\vec{\nabla} \cdot \vec{E}-4 \pi \rho$ were, say, strictly bigger than zero, then, by continuity, we could find a ball B_{ϵ} centered on that point with $\vec{\nabla} \cdot \vec{E}-4 \pi \rho>0$ everywhere on B_{ϵ}. This would force $\iiint_{B_{\epsilon}}[\vec{\nabla} \cdot \vec{E}-4 \pi \rho] d V>0$, which violates $\iiint_{V}[\vec{\nabla} \cdot \vec{E}-4 \pi \rho] d V=0$ with V set equal to B_{ϵ}. Hence $\vec{\nabla} \cdot \vec{E}-4 \pi \rho$ must be zero everywhere.
6) Evaluate, both by direct integration and by Stokes' Theorem, $\oint_{C}(z d x+x d y+y d z)$ where C is the circle $x+y+z=0, x^{2}+y^{2}+z^{2}=1$. Orient C so that its projection on the $x y$-plane is counterclockwise.
Solution. The projection of C on the $x y$-plane is $x^{2}+y^{2}+(-x-y)^{2}=1$ or $2 x^{2}+2 x y+2 y^{2}=1$ or $\frac{3}{2}(x+y)^{2}+\frac{1}{2}(x-y)^{2}=1$. Hence we may parametrize the curve using
$x+y=\sqrt{\frac{2}{3}} \cos \theta, x-y=-\sqrt{2} \sin \theta \Rightarrow\left\{\begin{array}{l}x(\theta)=\frac{1}{\sqrt{6}} \cos \theta-\frac{1}{\sqrt{2}} \sin \theta \\ y(\theta)=\frac{1}{\sqrt{6}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta \\ z(\theta)=-\frac{2}{\sqrt{6}} \cos \theta\end{array}\right.$ and $\left\{\begin{array}{l}x^{\prime}(\theta)=-\frac{1}{\sqrt{6}} \sin \theta-\frac{1}{\sqrt{2}} \cos \theta \\ y^{\prime}(\theta)=-\frac{1}{\sqrt{6}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta \\ z^{\prime}(\theta)=\frac{2}{\sqrt{6}} \sin \theta\end{array}\right.$
The sign in $x-y=-\sqrt{2} \sin \theta$ has been chosen to make the projected motion counterclockwise. The check this, observe that at $\theta=0,(x, y)=\frac{1}{\sqrt{6}}(1,1)$ and $\left(\frac{d x}{d \theta}, \frac{d y}{d \theta}\right)=\frac{1}{\sqrt{2}}(-1,1)$, which is up and to the left. This integral is of the form $\oint_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=z \hat{\boldsymbol{\imath}}+x \hat{\boldsymbol{\jmath}}+y \hat{\mathbf{k}}$ and C is curve parametrized above. Hence

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r}= & \int_{0}^{2 \pi} \vec{F}(\vec{r}(\theta)) \cdot \vec{r}^{\prime}(\theta) d \theta \\
= & \int_{0}^{2 \pi}\left[-\frac{2}{\sqrt{6}} \cos \theta\left(-\frac{1}{\sqrt{6}} \sin \theta-\frac{1}{\sqrt{2}} \cos \theta\right)\right. \\
& +\left(\frac{1}{\sqrt{6}} \cos \theta-\frac{1}{\sqrt{2}} \sin \theta\right)\left(-\frac{1}{\sqrt{6}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta\right) \\
& \left.\quad+\left(\frac{1}{\sqrt{6}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta\right)\left(\frac{2}{\sqrt{6}} \sin \theta\right)\right] d \theta \\
= & \int_{0}^{2 \pi}\left[\frac{3}{\sqrt{12}} \cos ^{2} \theta+\frac{3}{\sqrt{12}} \sin ^{2} \theta+\left(\frac{1}{3}-\frac{1}{6}-\frac{1}{2}+\frac{1}{3}\right) \sin \theta \cos \theta\right] d \theta \\
= & \frac{6 \pi}{\sqrt{12}}=\sqrt{3} \pi
\end{aligned}
$$

Choose as S the portion of the plane $x+y+z=0$ interior to the sphere. Then $\hat{n}=\frac{1}{\sqrt{3}}(\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}+\hat{\mathbf{k}})$ and $\vec{\nabla} \times \vec{F}=\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}+\hat{\mathbf{k}}$ so, by Stokes' Theorem,

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \vec{\nabla} \times \vec{F} \cdot \hat{n} d S=\iint_{S}(\hat{\imath}+\hat{\boldsymbol{\jmath}}+\hat{\mathbf{k}}) \cdot \frac{1}{\sqrt{3}}(\hat{\imath}+\hat{\boldsymbol{\jmath}}+\hat{\mathbf{k}}) d S=\sqrt{3} \iint_{S} d S=\sqrt{3} \pi
$$

since S is a circle of radius 1 .
7) Evaluate $\oint_{C}\left(x \sin y^{2}-y^{2}\right) d x+\left(x^{2} y \cos y^{2}+3 x\right) d y$ where C is the counterclockwise boundary of the trapezoid with vertices $(0,-2),(1,-1),(1,1)$ and $(0,2)$.
Solution. By Green's theorem (or Stokes' theorem)

$$
\begin{aligned}
\oint_{C}\left(x \sin y^{2}-y^{2}\right) d x+\left(x^{2} y \cos y^{2}+3 x\right) d y & =\iint_{T}\left(\frac{\partial}{\partial x}\left(x^{2} y \cos y^{2}+3 x\right)-\frac{\partial}{\partial y}\left(x \sin y^{2}-y^{2}\right)\right) d x d y \\
& =\iint_{T}^{y}\left(2 x y \cos y^{2}+3-2 x y \cos y^{2}+2 y\right) d x d y \\
& =\iint_{T}(3,-1)
\end{aligned}
$$

The integral of $2 y$ vanishes because the domain of integration is invariant under $y \rightarrow-y$. The other integral is 3 times the area of the trapezoid, which is its width (1) times the average of its heights $\left(\frac{1}{2}[2+4]\right)$. So $\oint_{C}\left(x \sin y^{2}-y^{2}\right) d x+\left(x^{2} y \cos y^{2}+3 x\right) d y=9$.
8) Evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=y e^{x} \hat{\boldsymbol{\imath}}+\left(x+e^{x}\right) \hat{\boldsymbol{\jmath}}+z^{2} \hat{\mathbf{k}}$ and C is the curve

$$
\vec{r}(t)=(1+\cos t) \hat{\imath}+(1+\sin t) \hat{\boldsymbol{\jmath}}+(1-\sin t-\cos t) \hat{\mathbf{k}}
$$

Solution. $\vec{\nabla} \times \vec{F}=\left(1+e^{x}-e^{x}\right) \hat{\mathbf{k}}$, so by Stokes' Theorem

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \hat{\mathbf{k}} \cdot d \vec{S}
$$

where S is the intersection of $x+y+z=3$ with $(x-1)^{2}+(y-1)^{2} \leq 1$. Now $\iint_{S} \hat{\mathbf{k}} \cdot d \vec{S}$ is the area of the projection of S on the $x y$-plane. This projection is the circle of radius 1 centred on $(1,1)$, which has area π. So $\oint_{C} \vec{F} \cdot d \vec{r}=\pi$.
9) Let C be the intersection of $x+2 y-z=7$ and $x^{2}-2 x+4 y^{2}=15$. The curve C is oriented counterclockwise when viewed from high on the z-axis. Let

$$
\vec{F}=\left(x^{3} e^{-x}+y z\right) \hat{\imath}+\left(\frac{\sin y}{y}+\sin z-x^{2}\right) \hat{\jmath}+(x y+y \cos z) \hat{\mathbf{k}}
$$

Evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$.
Solution. By Stokes' Theorem and the observation that $\vec{\nabla} \times \vec{F}=x \hat{\boldsymbol{\imath}}-(z+2 x) \hat{\mathbf{k}}$

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot d \vec{r} & =\iint_{S} \vec{\nabla} \times \vec{F} \cdot \hat{n} d S \quad \text { where } S \text { is the part of } x+2 y-z=7 \text { inside }(x-1)^{2}+4 y^{2}=16 \\
& =\left.\iint_{S}[x \hat{\boldsymbol{\imath}}-(z+2 x) \hat{\mathbf{k}}]\right|_{z=-7+x+2 y} \cdot(-1,-2,1) d x d y \\
& =\iint_{S}[7-4 x-2 y] d x d y \\
& =(\text { area of ellipse with semi-axes } a=4, b=2)[7-4 \bar{x}-2 \bar{y}] \\
& =\pi \times 4 \times 2[7-4 \times 1-2 \times 0]=24 \pi
\end{aligned}
$$

10) Consider $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S$ where S is the portion of the sphere $x^{2}+y^{2}+z^{2}=1$ that obeys $x+y+z \geq 1$, \hat{n} is the upward pointing normal to the sphere and $\vec{F}=(y-z) \hat{\boldsymbol{\imath}}+(z-x) \hat{\boldsymbol{\jmath}}+(x-y) \hat{\mathbf{k}}$. Find another surface S^{\prime} with the property that $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S=\iint_{S^{\prime}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S$ and evaluate $\iint_{S^{\prime}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S$.
Solution. Let S^{\prime} be the portion of $x+y+z=1$ that is inside the sphere $x^{2}+y^{2}+z^{2}=1$. Then $\partial S=\partial S^{\prime}$, so, by Stokes' Theorem, (with \hat{n} always the upward pointing normal)

$$
\iint_{S^{\prime}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S=\oint_{\partial S^{\prime}} \vec{F} \cdot d \vec{r}=\oint_{\partial S} \vec{F} \cdot d \vec{r}=\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S
$$

As $\vec{\nabla} \times \vec{F}=-2(\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}+\hat{\mathbf{k}})$ and, on $S^{\prime}, \hat{n}=\frac{1}{\sqrt{3}}(\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}+\hat{\mathbf{k}})$

$$
\iint_{S^{\prime}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S=\iint_{S^{\prime}}(-2 \sqrt{3}) d S=-2 \sqrt{3} \times \operatorname{Area}\left(S^{\prime}\right)
$$

S^{\prime} is a circular disk. It's center $\left(x_{c}, y_{c}, z_{c}\right)$ has to obey $x_{c}+y_{c}+z_{c}=1$. By symmetry, $x_{c}=y_{c}=z_{c}$, so $x_{c}=y_{c}=z_{c}=\frac{1}{3}$. Any point, like $(0,0,1)$, which satisfies both $x+y+z=1$ and $x^{2}+y^{2}+z^{2}=1$ is on the boundary of S^{\prime}. So the radius of S^{\prime} is $\left\|\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)-(0,0,1)\right\|=\left\|\left(\frac{1}{3}, \frac{1}{3},-\frac{2}{3}\right)\right\|=\sqrt{\frac{2}{3}}$. So the area of S^{\prime} is $\frac{2}{3} \pi$ and

$$
\iint_{S^{\prime}}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d S=-2 \sqrt{3} \times \operatorname{Area}\left(S^{\prime}\right)=-\frac{4}{\sqrt{3}} \pi
$$

