Math 263 Assignment \#8 Solutions

1. For each of the following vector fields $\overrightarrow{\mathbf{F}}$, find $\operatorname{div} \overrightarrow{\mathbf{F}}$ and $\operatorname{curl} \overrightarrow{\mathbf{F}}$.
(a) $\overrightarrow{\mathbf{F}}(x, y, z)=z \overrightarrow{\mathbf{j}}-y \overrightarrow{\mathbf{k}}$
(b) $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x^{2}, y, z\right\rangle$
(c) $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x+y,-y^{2},-2 z\right\rangle$
(a)

$$
\begin{aligned}
& \operatorname{div} \overrightarrow{\mathbf{F}}=\nabla \bullet \overrightarrow{\mathbf{F}}=\frac{\partial}{\partial x} F_{1}+\frac{\partial}{\partial y} F_{2}+\frac{\partial}{\partial z} F_{3}=\frac{\partial}{\partial x}(0)+\frac{\partial}{\partial y}(z)+\frac{\partial}{\partial z}(-y)=0+0+0=0 \\
& \begin{array}{r}
\operatorname{curl} \overrightarrow{\mathbf{F}}=\nabla \times \overrightarrow{\mathbf{F}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{\imath}} & \overrightarrow{\mathbf{\jmath}} & \overrightarrow{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
0 & z & -y
\end{array}\right|=\overrightarrow{\mathbf{\imath}}\left(\frac{\partial}{\partial y}(-y)-\frac{\partial}{\partial z}(z)\right)-\overrightarrow{\mathbf{\jmath}}\left(\frac{\partial}{\partial x}(-y)-\frac{\partial}{\partial z}(0)\right) \\
\\
+\overrightarrow{\mathbf{k}}\left(\frac{\partial}{\partial x}(z)-\frac{\partial}{\partial y}(0)\right)=\langle-2,0,0\rangle
\end{array}
\end{aligned}
$$

(b)

$$
\begin{array}{r}
\operatorname{div} \overrightarrow{\mathbf{F}}=\nabla \bullet \overrightarrow{\mathbf{F}}=\frac{\partial}{\partial x}\left(x^{2}\right)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(z)=2 x+1+1=2 x+2 \\
\begin{aligned}
\operatorname{curl} \overrightarrow{\mathbf{F}}=\nabla \times \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{1}}\left(\frac{\partial}{\partial y}(z)-\frac{\partial}{\partial z}(y)\right)-\overrightarrow{\mathbf{J}}\left(\frac{\partial}{\partial x}(z)-\frac{\partial}{\partial z}\left(x^{2}\right)\right) \\
+\overrightarrow{\mathbf{k}}\left(\frac{\partial}{\partial x}(y)-\frac{\partial}{\partial y}\left(x^{2}\right)\right)=\langle 0,0,0\rangle
\end{aligned}
\end{array}
$$

(c)

$$
\begin{gathered}
\operatorname{div} \overrightarrow{\mathbf{F}}=\nabla \bullet \overrightarrow{\mathbf{F}}=\frac{\partial}{\partial x}(x+y)+\frac{\partial}{\partial y}\left(-y^{2}\right)+\frac{\partial}{\partial z}(-2 z)=1-2 y-2=-2 y-1 \\
\begin{aligned}
\operatorname{curl} \overrightarrow{\mathbf{F}}=\nabla \times \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{1}}\left(\frac{\partial}{\partial y}(-2 z)-\frac{\partial}{\partial z}\left(-y^{2}\right)\right)-\overrightarrow{\mathbf{\jmath}}\left(\frac{\partial}{\partial x}(-2 z)-\frac{\partial}{\partial z}(x+y)\right) \\
+\overrightarrow{\mathbf{k}}\left(\frac{\partial}{\partial x}\left(-y^{2}\right)-\frac{\partial}{\partial y}(x+y)\right)=\langle 0,0,-1\rangle
\end{aligned}
\end{gathered}
$$

2. For each of the following oriented surfaces \mathcal{S}, (i) $\operatorname{sketch} \mathcal{S}$, (ii) parametrize \mathcal{S}, (iii) find the vector and scalar area elements $d \overrightarrow{\mathbf{S}}$ and $d S$ for your parametrization, (iv) calculate the indicated surface or flux integral.
(a) \mathcal{S} given by $z=x^{2} y^{2},-1 \leq x \leq 1,-1 \leq y \leq 1$ oriented positive side upward. Calculate $\iint_{\mathcal{S}} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{S}}$ for $\overrightarrow{\mathbf{F}}=x \overrightarrow{\mathbf{\imath}}+\overrightarrow{\mathbf{\jmath}}+z \overrightarrow{\mathbf{k}}$.
(b) \mathcal{S} surface of ellipsoid $4 x^{2}+4 y^{2}+z^{2}-6 z+5=0$ oriented inward. Calculate surface area of \mathcal{S}.
(c) \mathcal{S} surface of intersection of sphere $x^{2}+y^{2}+z^{2} \leq 4$ and plane $z=1$ oriented away from the origin. Calculate flux away from the origin of the electrical field $\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\frac{\overrightarrow{\mathbf{r}}}{|\overrightarrow{\mathbf{r}}|^{3}}$.
(a)

Parametrizing \mathcal{S} in x and y gives

$$
\overrightarrow{\mathbf{r}}(x, y)=\left\langle x, y, x^{2} y^{2}\right\rangle,-1 \leq x \leq 1,-1 \leq y \leq 1
$$

The vector area element is given by

$$
d \overrightarrow{\mathbf{S}}= \pm\left(\frac{\partial r}{\partial x} \times \frac{\partial r}{\partial y}\right) d x d y= \pm\left(\begin{array}{ccc}
\overrightarrow{\mathbf{\imath}} & \overrightarrow{\mathbf{\jmath}} & \overrightarrow{\mathbf{k}} \\
1 & 0 & 2 x y^{2} \\
0 & 1 & 2 x^{2} y
\end{array}\right) d x d y= \pm\left\langle-2 x y^{2},-2 x^{2} y, 1\right\rangle d x d y
$$

Since we want the positive side up, we choose the $d \overrightarrow{\mathbf{S}}$ with positive z-component: $d \overrightarrow{\mathbf{S}}=$ $\left\langle-2 x y^{2},-2 x^{2} y, 1\right\rangle d x d y$. The scalar area element is

$$
d S=\sqrt{4 x^{2} y^{4}+4 x^{4} y^{2}+1} d x d y
$$

Finally, we have

$$
\begin{aligned}
\iint_{\mathcal{S}} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{S}} & =\iint_{D}\left\langle x, 1, x^{2} y^{2}\right\rangle \bullet\left\langle-2 x y^{2},-2 x^{2} y, 1\right\rangle d x d y=\int_{-1}^{1} d x \int_{-1}^{1} d y\left[-x^{2} y^{2}-2 x^{2} y\right] \\
& =\left.\int_{-1}^{1} d x\left(-\frac{x^{2} y^{3}}{3}-x^{2} y^{2}\right)\right|_{y=-1} ^{y=1}=\int_{-1}^{1}\left(-\frac{2 x^{2}}{3}\right) d x=-\left.\frac{2}{9} x^{3}\right|_{x=-1} ^{x=1}=-\frac{4}{9}
\end{aligned}
$$

(b) Completing the square gives $4 x^{2}+4 y^{2}+(z-3)^{2}=4$, so \mathcal{S} is an ellipsoid centered at $(0,0,3)$ with semiaxes 1,1 , and 2 :

In cylindrical coordinates, \mathcal{S} consists of those points $[r, \theta, z]$ where $0 \leq \theta \leq 2 \pi, 1 \leq z \leq 5$, and $4 r^{2}+(z-3)^{2}=4$ or equivalently $r=\frac{1}{2} \sqrt{4-(z-3)^{2}}$. Therefore, we may parametrize it in θ and z as

$$
\overrightarrow{\mathbf{r}}(\theta, z)=\left\langle\frac{1}{2} \sqrt{4-(z-3)^{2}} \cos \theta, \frac{1}{2} \sqrt{4-(z-3)^{2}} \sin \theta, z\right\rangle, \quad 0 \leq \theta \leq 2 \pi, 1 \leq z \leq 5
$$

The vector area element is given by

$$
\begin{aligned}
d \overrightarrow{\mathbf{S}}= \pm\left(\frac{\partial r}{\partial \theta} \times \frac{\partial r}{\partial z}\right) d \theta d z & = \pm\left(\begin{array}{ccc}
\overrightarrow{\mathbf{1}} & \overrightarrow{\mathbf{J}} & \overrightarrow{\mathbf{k}} \\
-\frac{1}{2} \sqrt{4-(z-3)^{2}} \sin \theta & \frac{1}{2} \sqrt{4-(z-3)^{2}} \cos \theta & 0 \\
-\frac{1}{2} \frac{z-3}{\sqrt{4-(z-3)^{2}}} \cos \theta & -\frac{1}{2} \frac{z-3}{\sqrt{4-(z-3)^{2}}} \sin \theta & 2
\end{array}\right) d \theta d z \\
& = \pm\left\langle\frac{1}{2} \sqrt{4-(z-3)^{2}} \cos \theta, \frac{1}{2} \sqrt{4-(z-3)^{2}} \sin \theta, \frac{1}{4}(z-3)\right\rangle d \theta d z
\end{aligned}
$$

We want the inward orientation, so we want the version that, say, points downward at $(x, y, z)=$ $(0,0,5)$, thus:

$$
d \overrightarrow{\mathbf{S}}=-\left\langle\frac{1}{2} \sqrt{4-(z-3)^{2}} \cos \theta, \frac{1}{2} \sqrt{4-(z-3)^{2}} \sin \theta, \frac{1}{4}(z-3)\right\rangle d \theta d z
$$

The scalar area element is

$$
d S=\frac{1}{2} \sqrt{4-\frac{3}{4}(z-3)^{2}}
$$

giving a surface area

$$
\begin{aligned}
\iint_{\mathcal{S}} d S & =\int_{0}^{2 \pi} d \theta \int_{1}^{5} d z\left[\frac{1}{2} \sqrt{4-\frac{3}{4}(z-3)^{2}}\right]=\int_{0}^{2 \pi} d \theta \int_{-\sqrt{3}}^{\sqrt{3}} d u \frac{1}{\sqrt{3}} \sqrt{4-u^{2}} \\
& =\left.\int_{0}^{2 \pi} d \theta \frac{1}{\sqrt{3}}\left(\frac{u}{2} \sqrt{4-u^{2}}+2 \sin ^{-1} \frac{u}{2}\right)\right|_{u=-\sqrt{3}} ^{u=\sqrt{3}}=\int_{0}^{2 \pi} d \theta \frac{1}{\sqrt{3}}\left(\sqrt{3}+\frac{4 \pi}{3}\right) \\
& =2 \pi\left(1+\frac{4}{3 \sqrt{3}} \pi\right)
\end{aligned}
$$

[Note: The substitution used above was $u=\frac{\sqrt{3}}{2}(z-3)$.]
(c)

The surface obeys $x^{2}+y^{2} \leq 3$ and $z=1$, so parametrizing in the cylindrical coordinates r and θ, we have

$$
\overrightarrow{\mathbf{r}}(r, \theta)=\langle r \cos \theta, r \sin \theta, 1\rangle, \quad 0 \leq r \leq \sqrt{3}, 0 \leq \theta \leq 2 \pi
$$

giving a vector area element

$$
d \overrightarrow{\mathbf{S}}= \pm\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial r} \times \frac{\partial \overrightarrow{\mathbf{r}}}{\partial \theta}\right) d r d \theta= \pm\left(\begin{array}{ccc}
\overrightarrow{\mathbf{\imath}} & \overrightarrow{\mathbf{\jmath}} & \overrightarrow{\mathbf{k}} \\
\cos \theta & \sin \theta & 0 \\
-r \sin \theta & r \cos \theta & 0
\end{array}\right) d r d \theta= \pm\langle 0,0, r\rangle d r d \theta
$$

For an orientation facing away from the origin (i.e., upward), we choose $d \overrightarrow{\mathbf{S}}=\langle 0,0, r\rangle d r d \theta$. The scalar area element is $d S=|d \overrightarrow{\mathbf{S}}|=r d r d \theta$.
Finally, the desired integral is

$$
\begin{aligned}
\iint_{\mathcal{S}} \overrightarrow{\mathbf{E}} \bullet d \overrightarrow{\mathbf{S}} & =\int_{0}^{\sqrt{3}} d r \int_{0}^{2 \pi} d \theta\left[\frac{\langle r \cos \theta, r \sin \theta, 1\rangle}{\left(r^{2}+1\right)^{3 / 2}} \bullet\langle 0,0, r\rangle\right]=\int_{0}^{\sqrt{3}} d r \int_{0}^{2 \pi} d \theta \frac{r}{\left(r^{2}+1\right)^{3 / 2}} \\
& =2 \pi \int_{0}^{\sqrt{3}} \frac{r}{\left(r^{2}+1\right)^{3 / 2}} d r=\pi \int_{1}^{4} u^{-3 / 2} d u=-\left.2 \pi u^{-1 / 2}\right|_{u=1} ^{u=4}=\pi
\end{aligned}
$$

[Note: The substitution used above was $u=r^{2}+1$.]
3. Let \mathcal{S} be the portion of the surface $x^{2}+1=y^{2}+z^{2}$ bounded by the planes $x=-1, x=2$, and lying above the $x y$-plane. Calculate the surface integral $\iint_{\mathcal{S}} z \sqrt{\frac{1+2 x^{2}}{y^{2}+z^{2}}} d S$.
[Hint: You may find it helpful to restate the problem, exchanging the variables x, y, and z throughout to make the surface symmetric around the z-axis.]

This surface is the portion of the top half (that is, the portion above the plane $z=0$) of a hyperboloid of one sheet centered around the x-axis that falls between $x=-1$ and $x=2$. It looks like diagram (a) here:

However, if we restate the problem by swapping the variables x and z, then the new surface is the portion of $z^{2}+1=y^{2}+x^{2}$ between $z=-1$ and $z=2$ that obeys $x \geq 0$, as shown in diagram (b), and we can calculate the rewritten surface integral $I=\iint_{\mathcal{S}} x \sqrt{\frac{1+2 z^{2}}{y^{2}+x^{2}}} d S$ by first expressing the surface in cylindrical coordinates.

Note: For the remainder of this solution, we'll be working with the rewritten versions.
Note that the cylindrical coordinate $r=\sqrt{x^{2}+y^{2}}$ satisfies $r^{2}=z^{2}+1$ on the surface \mathcal{S}, so \mathcal{S} can be expressed in cylindrical coordinates as

$$
\mathcal{S}=\left\{\left[\sqrt{1+z^{2}}, \theta, z\right]:-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},-1 \leq z \leq 2\right\}
$$

giving a parametrization

$$
\overrightarrow{\mathbf{r}}(\theta, z)=\left\langle\sqrt{1+z^{2}} \cos \theta, \sqrt{1+z^{2}} \sin \theta, z\right\rangle, \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},-1 \leq z \leq 2
$$

The surface area element $d S$ for this parametrization is then given by

$$
\begin{aligned}
d S & =\left|\frac{\partial \overrightarrow{\mathbf{r}}}{\partial \theta} \times \frac{\partial \overrightarrow{\mathbf{r}}}{\partial z}\right| d \theta d z=\left\|\left.\begin{array}{ccc}
\overrightarrow{\mathbf{1}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
-\sqrt{1+z^{2}} \sin \theta & \sqrt{1+z^{2}} \cos \theta & 0 \\
\frac{z}{\sqrt{1+z^{2}}} \cos \theta & \frac{z}{\sqrt{1+z^{2}}} \sin \theta & 1
\end{array} \right\rvert\,\right\| d \theta d z \\
& =\left|\left\langle\sqrt{1+z^{2}} \cos \theta, \sqrt{1+z^{2}} \sin \theta,-z\right\rangle\right| d \theta d z=\sqrt{1+2 z^{2}} d \theta d z
\end{aligned}
$$

The integral may now be evaluated as follows:

$$
\begin{aligned}
I & =\int_{-1}^{2} d z \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \theta\left[\left(\sqrt{1+z^{2}} \cos \theta\right) \sqrt{\frac{1+2 z^{2}}{1+z^{2}}} \sqrt{1+2 z^{2}}\right]=\int_{-1}^{2} d z \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \theta\left[\left(1+2 z^{2}\right) \cos \theta\right] \\
& =\left.\int_{-1}^{2}\left(1+2 z^{2}\right) \sin \theta\right|_{\theta=-\pi / 2} ^{\theta=\pi / 2} d z=2 \int_{-1}^{2}\left(1+2 z^{2}\right) d z=\left.2\left(z+\frac{2}{3} z^{3}\right)\right|_{z=-1} ^{z=2}=18
\end{aligned}
$$

4. Use geometric reasoning to find $I=\iint_{\mathcal{S}} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{S}}$ "by inspection" in the three situations below. Briefly explain your answers. (In all parts, a and b are positive constants.)
(a) $\overrightarrow{\mathbf{F}}(x, y, z)=x \overrightarrow{\mathbf{\imath}}+y \overrightarrow{\mathbf{J}}+z \overrightarrow{\mathbf{k}}$, and \mathcal{S} is the surface consisting of three squares with one corner at the origin and positive sides facing the first octant. The squares have sides $b \overrightarrow{\mathbf{1}}$ and $b \overrightarrow{\mathbf{j}}, b \overrightarrow{\mathbf{\jmath}}$ and $b \overrightarrow{\mathbf{k}}$, and $b \overrightarrow{\mathbf{1}}$ and $b \overrightarrow{\mathbf{k}}$, respectively.
(b) $\overrightarrow{\mathbf{F}}(x, y, z)=(x \overrightarrow{\mathbf{1}}+y \overrightarrow{\mathbf{J}}) \ln \left(x^{2}+y^{2}\right)$, and \mathcal{S} is the surface of the cylinder (including the top and bottom) where $x^{2}+y^{2} \leq a^{2}$ and $0 \leq z \leq b$.
(c) $\overrightarrow{\mathbf{F}}(x, y, z)=(x \overrightarrow{\mathbf{\imath}}+y \overrightarrow{\mathbf{J}}+z \overrightarrow{\mathbf{k}}) e^{-\left(x^{2}+y^{2}+z^{2}\right)}$, and \mathcal{S} is the spherical surface $x^{2}+y^{2}+z^{2}=a^{2}$.
(a) The square with sides $b \overrightarrow{\mathbf{r}}$ and $b \overrightarrow{\mathbf{\jmath}}$ has normal $\hat{\mathbf{N}}=\overrightarrow{\mathbf{k}}$ and lies in the plane where $z=0$. Thus $\overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}}=z=0$ on this part of the surface. The same thing happens on the other two squares, so we have

$$
\iint_{\mathcal{S}} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{S}}=\iint_{\mathcal{S}} \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}} d S=\iint_{\mathcal{S}} 0 d S=0
$$

(b) On the flat top of the cylinder, the outward normal is $\hat{\mathbf{N}}=\overrightarrow{\mathbf{k}}$, and we have $\overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}}=0$. Similarly on the flat bottom. On the sides, the outward unit normal at position (x, y, z) is clearly $\hat{\mathbf{N}}=\left(\frac{x}{a}, \frac{y}{a}, 0\right)$, so we have

$$
\overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}}=\left(x\left(\frac{x}{a}\right)+y\left(\frac{y}{a}\right)\right) \ln \left(x^{2}+y^{2}\right)=a \ln \left(a^{2}\right)=2 a \ln (a)
$$

It follows that

$$
\left.\iint_{\mathcal{S}} \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}} d S=2 a \ln (a) \text { area(curved side }\right)=2 a \ln (a)[2 \pi a b]=4 \pi a^{2} b \ln (a)
$$

(c) On the surface of the sphere, the outward unit normal at $\overrightarrow{\mathbf{r}}$ is $\hat{\mathbf{N}}=\overrightarrow{\mathbf{r}} /|\overrightarrow{\mathbf{r}}|=\overrightarrow{\mathbf{r}} / a$. Hence

$$
\overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}}=\overrightarrow{\mathbf{r}} e^{-a^{2}} \bullet \frac{\overrightarrow{\mathbf{r}}}{a}=a e^{-a^{2}}
$$

Thus

$$
\iint_{\mathcal{S}} \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}} d S=a e^{-a^{2}} \iint_{\mathcal{S}} d S=a e^{-a^{2}}\left[4 \pi a^{2}\right]=4 \pi a^{3} e^{-a^{2}}
$$

5. Let \mathcal{S} be the boundary surface for the solid given by $0 \leq z \leq \sqrt{4-y^{2}}$ and $0 \leq x \leq \frac{\pi}{2}$.
(a) Find the outward unit normal vector field $\hat{\mathbf{N}}$ on each of the four sides of \mathcal{S}.
(b) Find the total outward flux of $\overrightarrow{\mathbf{F}}=4 \sin (x) \overrightarrow{\mathbf{\imath}}+z^{3} \overrightarrow{\mathbf{\jmath}}+y z^{2} \overrightarrow{\mathbf{k}}$ through \mathcal{S}.

Do the calculations directly-don't use the Divergence Theorem. [Hint: Flux integrals for three of the four sides can be calculated geometrically.]
(a) Here is a sketch of S :

On the front, where $x=\pi / 2$, the outward unit normal is $\hat{\mathbf{N}}=\overrightarrow{\mathbf{1}}$.
On the back, where $x=0$, the outward unit normal is $\hat{\mathbf{N}}=-\overrightarrow{\mathbf{1}}$.
On the bottom, where $z=0$, the outward unit normal is $\hat{\mathbf{N}}=-\overrightarrow{\mathbf{k}}$.
On the top, where $y^{2}+z^{2}=4$, an outward normal is $\overrightarrow{\mathbf{n}}=(0, y, z)$ - either by geometric inspection or by finding a gradient. It follows that the outward unit normal is $\overrightarrow{\mathbf{n}} /|\overrightarrow{\mathbf{n}}|=(0, y / 2, z / 2)$.
(b) Recall $\overrightarrow{\mathbf{F}}=4 \sin x \overrightarrow{\mathbf{\imath}}+z^{3} \overrightarrow{\mathbf{J}}+y z^{2} \overrightarrow{\mathbf{k}}$.

On the front, where $x=\pi / 2$ and $\hat{\mathbf{N}}=\overrightarrow{\mathbf{\imath}}, \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}}=4 \sin (\pi / 2)=4$, so

$$
I_{\text {front }}=\iint_{\mathcal{S}_{\text {front }}} \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}} d S=4 \iint_{\mathcal{S}_{\text {front }}} d S=4 \operatorname{area}\left(\mathcal{S}_{\text {front }}\right)=8 \pi
$$

On the back, where $x=0$ and $\hat{\mathbf{N}}=-\overrightarrow{\mathbf{1}}, \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}}=4 \sin (0)=0$, so

$$
I_{\text {back }}=\iint_{\mathcal{S}_{\text {back }}} \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}} d S=\iint_{\mathcal{S}_{\text {back }}} 0 d S=0
$$

On the bottom, where $z=0$ and $\hat{\mathbf{N}}=-\overrightarrow{\mathbf{k}}, \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}}=0$, so

$$
I_{\text {bottom }}=\iint_{\mathcal{S}_{\text {bottom }}} \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}} d S=\iint_{\mathcal{S}_{\text {bottom }}} 0 d S=0
$$

On the top, where $y^{2}+z^{2}=4$ and $\hat{\mathbf{N}}=(0, y / 2, z / 2), \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}}=\frac{1}{2} y z^{3}+\frac{1}{2} y z^{3}=y z^{3}$, so

$$
I_{\text {top }}=\iint_{\mathcal{S}_{\text {top }}} \overrightarrow{\mathbf{F}} \bullet \hat{\mathbf{N}} d S=\iint_{\mathcal{S}_{\text {top }}} y z^{3} d S=\operatorname{average}\left(y z^{3}\right) \operatorname{area}\left(\mathcal{S}_{\text {top }}\right)=0
$$

Here average $\left(y z^{3}\right)=0$ because the surface $\mathcal{S}_{\text {top }}$ has reflection symmetry across the plane $y=0$ and the integrand is an odd function of y. Of course the same value can be found by grinding calculation (provided it's done correctly).
Summary: The total outward flux of $\overrightarrow{\mathbf{F}}$ is the sum of four contributions, three of which are 0 . The value is 8π.
6. Simplify the following expressions for smooth vector fields $\overrightarrow{\mathbf{F}}$ and $\overrightarrow{\mathbf{G}}$ and smooth scalar fields ϕ and ψ. [Hint: You may find Theorem 3 on pages 954-955 helpful.]
(a) $\nabla \bullet(\nabla \phi \times \nabla \psi)$
(b) $\nabla \bullet(\phi \overrightarrow{\mathbf{F}}+\overrightarrow{\mathbf{G}})-(\nabla \phi) \bullet \overrightarrow{\mathbf{F}}$ for solenoidal $\overrightarrow{\mathbf{F}}$
(c) $\operatorname{div}(\overrightarrow{\mathbf{F}} \times(\overrightarrow{\mathbf{F}}+\overrightarrow{\mathbf{G}}))$ for conservative $\overrightarrow{\mathbf{G}}$
(a) Using Theorem 3(d) with $\overrightarrow{\mathbf{F}}=\nabla \phi$ and $\overrightarrow{\mathbf{G}}=\nabla \psi$, we get

$$
\nabla \bullet(\nabla \phi \times \nabla \psi)=(\nabla \times(\nabla \phi)) \bullet(\nabla \psi)-(\nabla \phi) \bullet(\nabla \times(\nabla \psi))
$$

However, by Theorem 3(h), $\nabla \times(\nabla \phi)=\overrightarrow{\mathbf{0}}$ and $\nabla \times(\nabla \psi)=\overrightarrow{\mathbf{0}}$, so

$$
\nabla \bullet(\nabla \phi \times \nabla \psi)=\overrightarrow{0} \bullet(\nabla \psi)-(\nabla \phi) \bullet \overrightarrow{0}=0-0=0
$$

(b) We can use the linearity of the divergence operator followed by an application of Theorem 3(b) to write:

$$
\begin{aligned}
\nabla \bullet(\phi \overrightarrow{\mathbf{F}}+\overrightarrow{\mathbf{G}})-(\nabla \phi) \bullet \overrightarrow{\mathbf{F}} & =\nabla \bullet(\phi \overrightarrow{\mathbf{F}})+\nabla \bullet \overrightarrow{\mathbf{G}}-(\nabla \phi) \bullet \overrightarrow{\mathbf{F}} \\
& =(\nabla \phi) \bullet \overrightarrow{\mathbf{F}}+\phi(\nabla \bullet \overrightarrow{\mathbf{F}})+\nabla \bullet \overrightarrow{\mathbf{G}}-(\nabla \phi) \bullet \overrightarrow{\mathbf{F}} \\
& =\phi(\nabla \bullet \overrightarrow{\mathbf{F}})+\nabla \bullet \overrightarrow{\mathbf{G}}
\end{aligned}
$$

Because $\overrightarrow{\mathbf{F}}$ is solenoidal, we have $\nabla \bullet \overrightarrow{\mathbf{F}}=0$, and so the final answer is $\nabla \bullet \overrightarrow{\mathbf{G}}$.
(c) By the linearity of the cross product and the divergence operator, we may write

$$
\operatorname{div}(\overrightarrow{\mathbf{F}} \times(\overrightarrow{\mathbf{F}}+\overrightarrow{\mathbf{G}}))=\operatorname{div}(\overrightarrow{\mathbf{F}} \times \overrightarrow{\mathbf{F}}+\overrightarrow{\mathbf{F}} \times \overrightarrow{\mathbf{G}}))=\operatorname{div}(\overrightarrow{\mathbf{F}} \times \overrightarrow{\mathbf{F}})+\operatorname{div}(\overrightarrow{\mathbf{F}} \times \overrightarrow{\mathbf{G}})
$$

At this point, you could either note that the cross product of any vector with itself is $\overrightarrow{\mathbf{0}}$, so we have $\overrightarrow{\mathbf{F}} \times \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}$ for any field $\overrightarrow{\mathbf{F}}$, or you could apply Theorem 3(d) to get

$$
\operatorname{div}(\overrightarrow{\mathbf{F}} \times \overrightarrow{\mathbf{F}})=(\nabla \times \overrightarrow{\mathbf{F}}) \bullet \overrightarrow{\mathbf{F}}-\overrightarrow{\mathbf{F}} \bullet(\nabla \times \overrightarrow{\mathbf{F}})=0
$$

In any event, since

$$
\operatorname{div}(\overrightarrow{\mathbf{F}} \times \overrightarrow{\mathbf{G}})=(\nabla \times \overrightarrow{\mathbf{F}}) \bullet \overrightarrow{\mathbf{G}}-\overrightarrow{\mathbf{F}} \bullet(\nabla \times \overrightarrow{\mathbf{G}})=(\nabla \times \overrightarrow{\mathbf{F}}) \bullet \overrightarrow{\mathbf{G}}
$$

(with this last equality a consequence of $\overrightarrow{\mathbf{G}}$ conservative implying $\nabla \times \overrightarrow{\mathbf{G}}=\overrightarrow{\mathbf{0}}$). we have

$$
\operatorname{div}(\overrightarrow{\mathbf{F}} \times(\overrightarrow{\mathbf{F}}+\overrightarrow{\mathbf{G}}))=\operatorname{div}(\overrightarrow{\mathbf{F}} \times \overrightarrow{\mathbf{G}})=(\nabla \times \overrightarrow{\mathbf{F}}) \bullet \overrightarrow{\mathbf{G}}
$$

7. A vector field $\overrightarrow{\mathbf{F}}$ is called a curl field if it can be expressed as $\overrightarrow{\mathbf{F}}=\operatorname{curl}(\overrightarrow{\mathbf{G}})$ for some vector field $\overrightarrow{\mathbf{G}}$. In this case, $\overrightarrow{\mathbf{G}}$ is called a vector potential for $\overrightarrow{\mathbf{F}}$.
(a) Explain why the following is true: if $\overrightarrow{\mathbf{G}}$ is a vector potential for a curl field $\overrightarrow{\mathbf{F}}$ and ϕ is a smooth scalar field, then $\overrightarrow{\mathbf{G}}+\nabla \phi$ is also a vector potential for $\overrightarrow{\mathbf{F}}$.

Now, consider the vector field $\overrightarrow{\mathbf{F}}=\left\langle x^{2} e^{2 y}, A z e^{2 y},(x-z)^{2} e^{2 y}\right\rangle$ where A is a constant.
(b) Only one choice for A makes $\overrightarrow{\mathbf{F}}$ a curl field. Find this value of A.
(c) Using the value of A from part (b), find a vector potential for $\overrightarrow{\mathbf{F}}$ having special form $\overrightarrow{\mathbf{G}}=\left\langle G_{1}, 0, G_{3}\right\rangle$.
(d) Repeat part (c), but find vector potentials with special forms $\left\langle 0, G_{2}, G_{3}\right\rangle$ and $\left\langle G_{1}, G_{2}, 0\right\rangle$. [Hint: Use the fact in part (a).]
(a) We have

$$
\begin{aligned}
\nabla \times(\overrightarrow{\mathbf{G}}+\nabla \phi) & =\nabla \times \overrightarrow{\mathbf{G}}+\nabla \times(\nabla \phi) & & (\text { curl is linear }) \\
& =\nabla \times \overrightarrow{\mathbf{G}} & & (\text { curl grad }=0) \\
& =\overrightarrow{\mathbf{F}} & & (\overrightarrow{\mathbf{G}} \text { is a vector potential for } \overrightarrow{\mathbf{F}})
\end{aligned}
$$

and this shows that $\overrightarrow{\mathbf{G}}+\nabla \phi$ is another vector potential for $\overrightarrow{\mathbf{F}}$.
(b) If $\overrightarrow{\mathbf{F}}$ is a curl field, it can be written $\overrightarrow{\mathbf{F}}=\operatorname{curl}(\overrightarrow{\mathbf{G}})$ for some $\overrightarrow{\mathbf{G}}$. But, then we must have $\operatorname{div} \overrightarrow{\mathbf{F}}=$ $\operatorname{div}(\operatorname{curl}(\overrightarrow{\mathbf{G}}))=0$ (because div curl $=0$ always).
However, $\operatorname{div} \overrightarrow{\mathbf{F}}=0$ implies

$$
\operatorname{div} \overrightarrow{\mathbf{F}}=\frac{\partial}{\partial x} x^{2} e^{2 y}+\frac{\partial}{\partial y} A z e^{2 y}+\frac{\partial}{\partial z}(x-z)^{2} e^{2 y}=2 x e^{2 y}+2 A z e^{2 y}-2(x-z) e^{2 y}=0
$$

and so $A=-1$.
(c) If $\overrightarrow{\mathbf{F}}=\operatorname{curl}\left\langle G_{1}, 0, G_{3}\right\rangle$, then

$$
\overrightarrow{\mathbf{F}}=\nabla \times \overrightarrow{\mathbf{G}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{\imath}} & \overrightarrow{\mathbf{\jmath}} & \overrightarrow{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
G_{1} & 0 & G_{3}
\end{array}\right|=\left\langle\frac{\partial}{\partial y} G_{3}, \frac{\partial}{\partial z} G_{1}-\frac{\partial}{\partial x} G_{3},-\frac{\partial}{\partial y} G_{1}\right\rangle
$$

However, for $A=-1$, we have

$$
\overrightarrow{\mathbf{F}}=\left\langle x^{2} e^{2 y},-z e^{2 y},(x-z)^{2} e^{2 y}\right\rangle
$$

and combining these two expressions for $\overrightarrow{\mathbf{F}}$ gives the following system of equations which we will denote by (*):

$$
(*)\left\{\begin{array}{l}
\frac{\partial}{\partial y} G_{3}=x^{2} e^{2 y} \\
\frac{\partial}{\partial z} G_{1}-\frac{\partial}{\partial x} G_{3}=-z e^{2 y} \\
\frac{\partial}{\partial y} G_{1}=-(x-z)^{2} e^{2 y}
\end{array}\right.
$$

Integrating the first and third equation of $(*)$ each with respect to y gives

$$
\begin{aligned}
& G_{3}(x, y, z)=\int x^{2} e^{2 y} d y=\frac{1}{2} x^{2} e^{2 y}+K_{1}(x, z) \\
& G_{1}(x, y, z)=\int-(x-z)^{2} e^{2 y} d y=-\frac{1}{2}(x-z)^{2} e^{2 y}+K_{2}(x, z)
\end{aligned}
$$

Substituting these into the second equation of $(*)$ gives

$$
(x-z) e^{2 y}+\frac{\partial}{\partial z} K_{2}(x, z)-x e^{2 y}-\frac{\partial}{\partial x} K_{1}(x, z)=-z e^{2 y}
$$

which simplifies to

$$
\frac{\partial}{\partial z} K_{2}(x, z)-\frac{\partial}{\partial x} K_{1}(x, z)=0
$$

Could we be so lucky that any functions $K_{1}(x, z)$ and $K_{2}(x, z)$ that satisfy this equation will work? Well, $K_{1}(x, z)=0$ and $K_{2}(x, z)=0$ satisfy this equation. Substituting them into the formulas for G_{3} and G_{1} above gives us:

$$
\begin{aligned}
G_{3}(x, y, z) & =\frac{1}{2} x^{2} e^{2 y} \\
G_{1}(x, y, z) & =-\frac{1}{2}(x-z)^{2} e^{2 y}
\end{aligned}
$$

Some quick partial differentiation confirms that these satisfy the system of equation (*), giving the vector potential

$$
\overrightarrow{\mathbf{G}}=\left\langle G_{1}, 0, G_{3}\right\rangle=\left\langle-\frac{1}{2}(x-z)^{2} e^{2 y}, 0, \frac{1}{2} x^{2} e^{2 y}\right\rangle
$$

(d) In part (c), we found a vector potential for $\overrightarrow{\mathbf{F}}$, and part (a) tells us that we can add the gradient $\nabla \phi$ of any ϕ to our $\overrightarrow{\mathbf{G}}$ and still have a vector potential.

- To get a vector potential of the form $\left\langle 0, G_{2}, G_{3}\right\rangle$, we would like to find a ϕ so that

$$
\left\langle 0, G_{2}, G_{3}\right\rangle=\left\langle-\frac{1}{2}(x-z)^{2} e^{2 y}, 0, \frac{1}{2} x^{2} e^{2 y}\right\rangle+\nabla \phi
$$

or, in other words

$$
\nabla \phi=\left\langle\frac{1}{2}(x-z)^{2} e^{2 y}, G_{2}, G_{3}-\frac{1}{2} x^{2} e^{2 y}\right\rangle
$$

for some as yet unknown G_{2} and G_{3}. But, this implies

$$
\frac{\partial}{\partial x} \phi=\frac{1}{2}(x-z)^{2} e^{2 y}
$$

which we integrate to show

$$
\phi(x, y, z)=\int \frac{1}{2}(x-z)^{2} e^{2 y} d x=\frac{1}{6}(x-z)^{3} e^{2 y}+K_{3}(y, z)
$$

Any choice of K_{3} will work. Taking $K_{3}(y, z)=0$, we have $\phi(x, y, z)=\frac{1}{6}(x-z)^{3} e^{2 y}$ giving

$$
\nabla \phi=\left\langle\frac{1}{2}(x-z)^{2} e^{2 y}, \frac{1}{3}(x-z)^{3} e^{2 y},-\frac{1}{2}(x-z)^{2} e^{2 y}\right\rangle
$$

and so

$$
\begin{aligned}
\left\langle 0, G_{2}, G_{3}\right\rangle & =\left\langle-\frac{1}{2}(x-z)^{2} e^{2 y}, 0, \frac{1}{2} x^{2} e^{2 y}\right\rangle+\left\langle\frac{1}{2}(x-z)^{2} e^{2 y}, \frac{1}{3}(x-z)^{3} e^{2 y},-\frac{1}{2}(x-z)^{2} e^{2 y}\right\rangle \\
& =\left\langle 0, \frac{1}{3}(x-z)^{3} e^{2 y}, \frac{1}{2}\left(x^{2}-(x-z)^{2}\right) e^{2 y}\right\rangle
\end{aligned}
$$

- To get a vector potential of the form $\left\langle G_{1}, G_{2}, 0\right\rangle$, we want a ϕ so that

$$
\left\langle G_{1}, G_{2}, 0\right\rangle=\left\langle-\frac{1}{2}(x-z)^{2} e^{2 y}, 0, \frac{1}{2} x^{2} e^{2 y}\right\rangle+\nabla \phi
$$

or

$$
\nabla \phi=\left\langle G_{1}+\frac{1}{2}(x-z)^{2} e^{2 y}, G_{2},-\frac{1}{2} x^{2} e^{2 y}\right\rangle
$$

for some as yet unknown G_{1} and G_{2}. But, this implies

$$
\frac{\partial}{\partial z} \phi=-\frac{1}{2} x^{2} e^{2 y}
$$

which we integrate to show

$$
\phi(x, y, z)=\int-\frac{1}{2} x^{2} e^{2 y} d z=-\frac{1}{2} x^{2} e^{2 y} z+K_{4}(x, y)
$$

Any choice of K_{4} will work. Taking $K_{4}(x, y)=0$, we have $\phi(x, y, z)=-\frac{1}{2} x^{2} e^{2 y} z$ giving

$$
\nabla \phi=\left\langle-x e^{2 y} z,-x^{2} e^{2 y} z,-\frac{1}{2} x^{2} e^{2 y}\right\rangle
$$

and so

$$
\begin{aligned}
\left\langle G_{1}, G_{2}, 0\right\rangle & =\left\langle-\frac{1}{2}(x-z)^{2} e^{2 y}, 0, \frac{1}{2} x^{2} e^{2 y}\right\rangle+\left\langle-x e^{2 y} z,-x^{2} e^{2 y} z,-\frac{1}{2} x^{2} e^{2 y}\right\rangle \\
& =\left\langle-\left(\frac{1}{2}(x-z)^{2}+x z\right) e^{2 y},-x^{2} e^{2 y} z, 0\right\rangle
\end{aligned}
$$

