Math 263 Assignment #8 Solutions

1. For each of the following vector fields ﬁ, find divF and curlF.

(a‘) ﬁ(x,y, Z) =2]— yE (b) ﬁ(x,y, Z)

(x%,y,2)  (c) F(z,y,2) = (v +y,—y* —22)
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2. For each of the following oriented surfaces S, (i) sketch S, (ii) parametrize S, (iii) find the vector and scalar
area elements dS and dS for your parametrization, (iv) calculate the indicated surface or flux integral.

a given by z = x2%y*, -1 <z <1, -1 <y <1 oriented positive side upward. Calculate F e dS
S given b 242, —1 <z <1, =1 <y < 1 oriented positive sid d. Calcul F e dS
S
for F = 21+ 7+ zk.
surface of ellipsoid 4z~ + + 2% — 62 4+ 5 = 0 oriented inward. Calculate surface area of S.

(b) S surface of ellipsoid 4a? + 4y? + 22 — 62 + 5 = 0 oriented inward. Calcul f fS
¢ surface of intersection of sphere xz° + y~ + 2z° < 4 and plane z = 1 oriented away from the origin.
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Calculate flux away from the origin of the electrical field E(F) = FER
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Parametrizing S in « and y gives
F(‘Tvy) = <‘T7y7x2y2>7 -1 S z S 17 -1 S Yy S 1

The vector area element is given by

- ar  Or Iy k
dS=+(—x—|dzdy=%x|1 0 2zy®|dady=+=+ <—2xy2, —22%y, 1> dx dy
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Since we want the positive side up, we choose the dS with positive z-component: S =
<—2:vy2, —22%y, 1> dx dy. The scalar area element is

dS = /4x2y* + 4x*y? + 1 dx dy

Finally, we have
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(b) Completing the square gives 422 + 4> + (2 — 3)> = 4, s0 S is an ellipsoid centered at (0,0,3) with
semiaxes 1, 1, and 2:
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In cylindrical coordinates, S consists of those points [r, 8, z] where 0 < 6 < 27, 1 < z < 5, and

1
4r% 4 (2 — 3)* = 4 or equivalently r = B v/4 — (z — 3)2. Therefore, we may parametrize it in 6 and z
as

1 1
F(@,Z)—<§ 4—(,2—3)200s9,§ 4—(2—3)Qsin9,z>, 0<f#<2m,1<2z<5

The vector area element is given by

T il K
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We want the inward orientation, so we want the version that, say, points downward at (x,y,z) =
(0,0,5), thus:

d§:—<% 4 —(z—3)2cosb, \/ (z —3)2 51n9 3)>d9dz

The scalar area element is

giving a surface area
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The surface obeys z? + y?> < 3 and z = 1, so parametrizing in the cylindrical coordinates r and 6,
we have

£(r,0) = (rcosf,rsinf, 1), 0<r<+3,0<6<2r

giving a vector area element

 ler o P
dS =+ (@ X ﬁ) drdf = + cosf sin 6

5 = 39 . drdf = £+(0,0,r)drdf
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For an orientation facing away from the origin (i.e., upward), we choose s = (0,0,rydrdf. The
scalar area element is dS = |dS| = r dr df.
Finally, the desired integral is
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[Note: The substitution used above was u = r* + 1.]
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3. Let S be the portion of the surface 22 + 1 = y? + 22 bounded by the planes z = —1, z = 2, and lying

1+ 222
above the zy-plane. Calculate the surface integral / / z % ds.
S ) z
[Hint: You may find it helpful to restate the problem, exchanging the variables z, y, and z throughout to
make the surface symmetric around the z-axis.]

This surface is the portion of the top half (that is, the portion above the plane z = 0) of a hyperboloid of
one sheet centered around the z-axis that falls between x = —1 and « = 2. Tt looks like diagram (a) here:

(a) (b)

However, if we restate the problem by swapping the variables x and z, then the new surface is the portion
of 22 +1 = y? + z° between z = —1 and z = 2 that obeys z > 0, as shown in diagram (b), and we

[1+ 222
can calculate the rewritten surface integral I = / / T % dS by first expressing the surface in
s y rx

cylindrical coordinates.

Note: For the remainder of this solution, we’ll be working with the rewritten versions.

Note that the cylindrical coordinate r = /22 4+ 32 satisfies 7> = 22 + 1 on the surface S, so S can be
expressed in cylindrical coordinates as

S:{[\/1+z2,9,z} :—ggogg,—1§z§2}

giving a parametrization
0, z) = <\/1+z2cost9, \/1+z2sin9,z>, —g <6< g, —-1<2<2

The surface area element dS for this parametrization is then given by
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The integral may now be evaluated as follows:

2 5 2 2 z
I= / dz/ de (\/ 1+ 22 cos 9) ﬂ\/ 1+ 222] = / dz/ df [(1 4 22) cos b
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4. Use geometric reasoning to find I = / / F e dS “by inspection” in the three situations below. Briefly
s
explain your answers. (In all parts, @ and b are positive constants.)

(a) f(:z:, Y, 2) = o1+ yJ+ zE, and S is the surface consisting of three squares with one corner at the origin
and positive sides facing the first octant. The squares have sides b1 and by, b) and bk, and b1 and bk,
respectively.

(b) F(z,y,2) = (aT+y7) In(z? + ), and S is the surface of the cylinder (including the top and bottom)
where a:2+y2 <a?and 0 <z <b.

(c) F(z,y,2) = (aT+yT+ 212)67(12”2“2), and S is the spherical surface 2% + y* + 2% = a”.

(a) The square with sides b1 and by has normal N = k and lies in the plane where z = 0. Thus
F ¢ N = z = 0 on this part of the surface. The same thing happens on the other two squares, so we

have
//ﬁ.dé://ﬁ.NdS://Odszo.
S S S

(b) On the flat top of the cylinder, the outward normal is N = E, and we have F ¢ N = 0. Similarly on
the flat bottom. On the sides, the outward unit normal at position (z,y, z) is clearly N = (E, g, O),
a’ a
so we have L "
FeN= (:17 (—) +y (g)) In(z? + y*) = aln(a®) = 2a1n(a).
a a
It follows that

// F ¢ NdS = 2aln(a) arca(curved side) = 2aIn(a) [27ab] = 47abIn(a).
s

(¢) On the surface of the sphere, the outward unit normal at ¥ is N = ©'/|f| = /a. Hence

2

FeN=7%c o

// FeNdS = ge=® // ds = ae=% [47m2} — 4made=,
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5. Let S be the boundary surface for the solid given by 0 <z < /4 —y? and 0 <z < 7.

(a)
(b)

Find the outward unit normal vector field N on each of the four sides of S.

Find the total outward flux of F = 4 sin(z) T4 237 + y2° Kk through S.

Do the calculations directly—don’t use the Divergence Theorem. [Hint: Flux integrals for three of the
four sides can be calculated geometrically.]

(a)

Here is a sketch of S:

On the front, where x = 7/2, the outward unit normal is N=T1
On the back, where x = 0, the outward unit normal is N=-1
On the bottom, where z = 0, the outward unit normal is N = —k.

On the top, where y? + 2% = 4, an outward normal is @i = (0, y, z)—either by geometric inspection
or by finding a gradient. It follows that the outward unit normal is ii/|ii| = (0,y/2, z/2).

Recall F = 4sinz T+ 227+ yz? K.
On the front, where 2 = 7/2 and N =T, F o N = 4sin(7/2) = 4, so

Tront = / / FeNdS =4 / / dS = 4 area(Spont) = 87.
S Sfront

front

On the back, where z =0 and N = —T, FeN = 4sin(0) = 0, so

On the bottom, where z = 0 and N = —12, FeN = 0, so

Ibottom:// F‘.NdSZ// 0dS = 0.
Sphottom Sphottom

On the top, where 4> + 22 =4 and N = (0,9/2,2/2), FeN = %yz3 + %yz3 =23, so

o

Here average (yz3) = 0 because the surface S;op has reflection symmetry across the plane y = 0 and
the integrand is an odd function of y. Of course the same value can be found by grinding calculation
(provided it’s done correctly).

FeNdS = // yz> dS = average (yzg) area(Siop) = 0.
Stop

top

Summary: The total outward flux of F is the sum of four contributions, three of which are 0. The
value is 8.



6. Simplify the following expressions for smooth vector fields F and G and smooth scalar fields ¢ and .
[Hint: You may find Theorem 3 on pages 954-955 helpful.]

(a) Ve (Vo x Vi) (b) V e (¢F 4+ G) — (Vo) o F for solenoidal F
(c) diV(F x (F + é)) for conservative G

(a) Using Theorem 3(d) with F = V¢ and G = Vi), we get
Ve (Vo x Vi) =(V x(Ve))e(Vy)— (Vo) e (Vx (V)
However, by Theorem 3(h), V x (V¢) = 0 and V x (Vi) = 0, so
Ve (VpxViy)=0e (V) —(Vp)e0=0—-0=0

(b) We can use the linearity of the divergence operator followed by an application of Theorem 3(b) to
write:

Ve (¢F +G)— (Vo) e F =Ve(¢F)+VeG—(Vo)eF
= (Vo) e F+3(VeF)+VeG — (Vo) o F
=¢p(VeF)+VeG

Because F is solenoidal, we have V e F = 0, and so the final answer is V o G.
(¢c) By the linearity of the cross product and the divergence operator, we may write

— — — —

div(F x (F+ G)) = div(F x F + F x G)) = div(F x F) + div(F x G)

At thls pomt you could elther note that the cross product of any vector with itself is O so we have
F x F =0 for any field F or you could apply Theorem 3(d) to get

div(FxF)= (VxF)eF—Fe(VxF)=0
In any event, since
diviFxG)=(VxF)eG-Fe(VxG)=(VxF)eG
(with this last equality a consequence of G conservative implying V x G = 0). we have

div(Fx (F+G)) =div(Fx G) = (Vx F) ¢ G



7. A vector field F is called a curl field if it can be expressed as F = curl(é) for some vector field G. In
this case, G is called a vector potential for F.

(a) Explain why the following is true: if G is a vector potential for a curl field F and ¢ is a smooth
scalar field, then G+ V¢ is also a vector potential for F.

Now, consider the vector field F = <x262y, Aze® (z — 2)262y> where A is a constant.

(b) Only one choice for A makes F a curl field. Find this value of A.

(¢) Using the value of A from part (b), find a vector potential for F having special form G = (G1,0,Gs5).

(d) Repeat part (c), but find vector potentials with special forms (0, Gz, G3) and (G1, G2, 0). [Hint: Use
the fact in part (a).]

(a) We have
Vx(G+Ve)=VxG+Vx (Vo) (curl is linear)
=V xG (curl grad = 0)
=F (é is a vector potential for ﬁ)

and this shows that G + V¢ is another vector potential for F.
(b) If F is a curl field, it can be written F = curl(G) for some G. But, then we must have divF =

—

div(curl(G)) = 0 (because div curl = 0 always).
However, div F=0 implies

divF = %x%zy + %Azezy + %(m —2)%e® = 2z + 24ze*Y — 2(x — 2)e* =0

and so A = —1.
(c) If F = curl (G4, 0,Gs), then

T 7 kK
= = g 0 0 0 0 0 0
F=VxG=|—- — —|=(=—G3,=—G ——G3,——G
. Or Oy 0Oz <3y S P Ay 1>
Gy 0 Gy
However, for A = —1, we have

F= (z?e®, —ze™, (x — 2)%e™)

and combining these two expressions for F gives the following system of equations which we will
denote by (*):

(%G;; = 2%e?
0 0
(%) &Gl - %G3 = —ze%
82(;1 = —(x —2)%%
Y

Integrating the first and third equation of (x) each with respect to y gives
Gs(x,y,2) = /x262ydy = %£C2€2y + Ky (x, 2)
Gi(z,y,2) = /—(:v —2)%eMdy = —%(,T —2)%e® + Ky(x, 2)
Substituting these into the second equation of () gives

(x — 2)e?¥ + 2Kg(:zc,z) — ze?¥ — gKl(gc,z) = —ze?

0z ox



which simplifies to

3} 0
&Kg(:v,z) - %Kl(x,z) =0

Could we be so lucky that any functions Ki(x, z) and Ka(z, z) that satisfy this equation will work?
Well, Ki(z,2z) = 0 and Ky(z,z) = 0 satisfy this equation. Substituting them into the formulas for
Gs and (G above gives us:

1
G3(Ia Y, Z) = §I262y

Gl(xuyaz) = _%(‘T - 2)2621/

Some quick partial differentiation confirms that these satisfy the system of equation (x), giving the
vector potential

= 1 1
G = (G1,0,G3) = <—§(:17 —2)%e0, §{E262y>

In part (c), we found a vector potential for ﬁ, and part (a) tells us that we can add the gradient V¢
of any ¢ to our G and still have a vector potential.

e To get a vector potential of the form (0, Ga, G3), we would like to find a ¢ so that
1 2.2 L 2o
(0,G2,G3) = —5(17 —2)%e y,O,ix eV )Y+ Vo
or, in other words
1 1
Vo = <§(x —2)%e%Y, Gy, G3 — §{E262y>
for some as yet unknown G5 and G3. But, this implies
1
(%05 = 5(33 —2)%e®

which we integrate to show
1 2 2y 1 3 2y
qﬁ(x,y,z)z 5(‘1‘._2) € d:vza(x—z) € +K3(y,z)

(z — 2)3e?Y giving

| =

Any choice of K3 will work. Taking K3(y, z) = 0, we have ¢(x,y,2) =

1 1 1
Vo = <§(:1: —2)%e%, g(x —2)3%e?, —5(3: — 2)262y>
and so

1 2 2 L 5o 1 2 9y 1 39y 1 2 2
(0,G2,G3) = ( —=(x — 2)%e?,0,=x"e”Y ) + ( =(x — 2)%e?Y, = (x — 2)°eY, —=(x — 2)%e™

2 2 2 3 2

=(0 1(3:—2)3627’ l(:172— (x —2)%)e*
'3 2
e To get a vector potential of the form (G1,G2,0), we want a ¢ so that
1 2.2 L 2o
(G1,G9,0) = —5(:10 —z)%e y,0,5:v eV )Y+ Vo

or
1 1
Vo = <G1 + 5(:10 — 2)%e® Gy, —§$2€2y>
for some as yet unknown G; and G>. But, this implies

0 1,



which we integrate to show
L o 2y L, 2y
P(r,y,2) = —5Te dz:—§3: eYz 4+ Ky(z,y)

2.2

1
Any choice of K4 will work. Taking K4(z,y) = 0, we have ¢(x,y, z) = —5Te Yz giving

1
Vo = <—;C62yz, —z2e%z, —5:102627’

and so

1 1 1
(G1,G4,0) = <—§(3: —2)%e%Y,0, §I262y> + <—I62y2, —z2e?y, —§x2e2y>

1
= <— (5(;10 —2)* + ;CZ) e, —x?e?Vz, O>



