Math 263 HW07 Solutions

1. Compute the volumes of the following regions.
(a) The "ice-cream cone" region which is bounded above by the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution. In spherical coordinates,

$$
\begin{aligned}
V & \left.=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{a} \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \int_{0}^{\pi / 4} \sin \phi \rho^{3} / 3\right]_{0}^{a} d \phi \\
& =2 \pi(-\cos \phi)]_{0}^{\pi / 4} a^{3} / 3=\frac{2 \pi a^{3}}{3}(-\cos \pi / 4+\cos 0)=\frac{\pi a^{3}(2-\sqrt{2})}{3}
\end{aligned}
$$

or in cylindrical coordinates,

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{a / \sqrt{2}} \int_{r}^{\sqrt{a^{2}-r^{2}}} r d z d r d \theta=2 \pi \int_{0}^{a / \sqrt{2}}\left(r \sqrt{a^{2}-r^{2}}-r^{2}\right) d r \\
& =2 \pi\left[\frac{-\left(a^{2}-r^{2}\right)^{3 / 2}-r^{3}}{3}\right]_{0}^{a / \sqrt{2}}=2 \pi \frac{-\left(a^{2}-a^{2} / 2\right)^{3 / 2}+\left(a^{2}-0^{2}\right)^{3 / 2}-(a / \sqrt{2})^{3}+(0)^{3}}{3} \\
& =2 \pi\left(\frac{a^{3}-2 a^{3} / 2 \sqrt{2}}{3}\right)=\frac{\pi a^{3}(2-\sqrt{2})}{3} .
\end{aligned}
$$

(b) The region bounded by $z=x^{2}+3 y^{2}$ and $z=4-y^{2}$.

Solution. The parabolic cylinder $z=4-y^{2}$ comprises the top of the surface (considered in terms of z) and the paraboloid $z=x^{2}+3 y^{2}$ is the bottom surface in terms of z. To determine the region of the $x y$-plane which the region bounded by these two surfaces lies over, we intersect the two surfaces, in this case we can set them equal to each other. We see that $x^{2}+3 y^{2}=4-y^{2}$ if and only if $x^{2}+4 y^{2}=4$ if and only if $(x / 2)^{2}+y^{2}=1$. We will set up and compute the integral of this volume in rectangular coordinates (using a table of integrals to compute the anti-derivative $\left.\int\left(4-x^{2}\right)^{3 / 2} d x\right)$.

$$
\begin{aligned}
V & =\int_{-2}^{2} \int_{-\sqrt{4-x^{2}} / 2}^{\sqrt{4-x^{2}} / 2} \int_{x^{2}+3 y^{2}}^{4-y^{2}} d z d y d x=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}} / 2}^{\sqrt{4-x^{2}} / 2}\left(4-x^{2}-4 y^{2}\right) d y d x \\
& =\int_{-2}^{2}\left[\left(4-x^{2}\right) y-(4 / 3) y^{3}\right]_{-\sqrt{4-x^{2}} / 2}^{\sqrt{4-x^{2}} / 2} d x=2 \int_{-2}^{2}\left(\frac{\left(4-x^{2}\right)^{3 / 2}}{2}-\frac{\left(4-x^{2}\right)^{3 / 2}}{6}\right) d x \\
& \left.=\frac{2}{3} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x=\frac{2}{3}\left[\frac{x}{8}\left(5 \cdot 2^{2}-2 x^{2}\right) \sqrt{4-x^{2}}+\frac{3 \cdot 2^{4}}{8} \sin ^{-1}(x / 2)\right)\right]_{-2}^{2} \\
& =4\left(\sin ^{-1}(1)-\sin ^{-1}(-1)\right)=4 \pi
\end{aligned}
$$

Another way to compute this integral would be to make a substitution $x=2 u$, so $d x=2 d u$ and we would be integrate over a circle of radius 1 in (u, y), which we will call \widetilde{R} whereas the ellipse will be called R. This makes everything much simpler (I swear it does). Lets see what happens.

$$
\begin{aligned}
V & =\iint_{R}\left(\int_{x^{2}+3 y^{2}}^{4-y^{2}} d z\right) d A=\iint_{R}\left(4-x^{2}-4 y^{2}\right) d x d y=\iint_{\widetilde{R}}\left(4-4 u^{2}-4 y^{2}\right) 2 d u d y \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(4-4 r^{2}\right) 2 r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(8 r-8 r^{3}\right) d r=2 \pi\left[4 r^{2}-2 r^{4}\right]_{0}^{1}=2 \pi(4-2)=4 \pi
\end{aligned}
$$

(c) The region inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the cylinder $x^{2}+y^{2}=4$.

Solution. A sphere of radius 3 has volume $V_{S}=36 \pi$. Let V_{C} denote the volume inside the given sphere and the given cylinder simultaneously. The the volume we want, $V=V_{S}-V_{C}$. Let's compute V_{C} using cylindrical coordinates.

$$
\begin{aligned}
V_{C} & =\int_{0}^{2 \pi} \int_{0}^{2} \int_{-\left(9-r^{2}\right)^{1 / 2}}^{\left(9-r^{2}\right)^{1 / 2}} r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{2}\left(9-r^{2}\right)^{1 / 2} 2 r d r d \theta \\
& =2 \pi\left[\frac{-2}{3}\left(9-r^{2}\right)^{3 / 2}\right]_{0}^{2}=\frac{4 \pi}{3}\left(9^{3 / 2}-5^{3 / 2}\right)=36 \pi-\frac{4 \pi 5^{3 / 2}}{3}
\end{aligned}
$$

hence $V=V_{S}-V_{C}=\frac{4 \pi 5^{3 / 2}}{3}$.
2. Let T be the solid bounded by $z=2$ and $z=\frac{1}{2} \sqrt{x^{2}+y^{2}}$ and with $y \geq 0$. Furthermore, assume that T has constant density $\delta(x, y, z)=\alpha>0$.
(a) Compute the center of mass, $(\bar{x}, \bar{y}, \bar{z})$, of T. Recall that

Solution. Note that the solid T is one-half of a right-circular cone of height, $h=2$, and radius, $r=4$. Therefore, the volume of $T, V=(1 / 6) \pi r^{2} h=(1 / 6) \pi 4^{2} 2=16 \pi / 3$. Since mass $=M=$ $\iiint_{T} \delta(x, y, z) d V$ and $\delta(x, y, z)=\alpha$ which is a constant, we have that $M=16 \alpha \pi / 3$. Also note that the region is symmetric about the $y z$-plane, and hence $\bar{x}=0$. So we must compute \bar{y} and \bar{z}, which is most naturally set-up in cylindrical coordinates. (Note that $z=(1 / 2) \sqrt{x^{2}+y^{2}}=r / 2$ in cylindrical coordinates.)

$$
\begin{aligned}
\bar{y} & =\frac{1}{M} \iiint_{T} y \delta(x, y, z) d V=\frac{3}{16 \pi \alpha} \iiint_{T} y \alpha d z d y d x=\frac{3}{16 \pi} \int_{0}^{\pi} \int_{0}^{4} \int_{r / 2}^{2} r^{2} \sin \theta d z d r d \theta \\
& =\frac{3}{16 \pi} \int_{0}^{\pi} \int_{0}^{4}(2-r / 2) r^{2} \sin \theta d r d \theta=\frac{3}{16 \pi}[(-\cos \theta)]_{0}^{\pi}\left[\frac{2}{3} r^{3}-\frac{1}{8} r^{4}\right]_{0}^{4} \\
& =\frac{3}{16 \pi}(2)(128 / 3-256 / 8)=\frac{6}{\pi}(8 / 3-16 / 8)=16 / \pi-12 / \pi=4 / \pi
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{z} & =\frac{1}{M} \iiint_{T} z \delta(x, y, z) d V=\frac{3}{16 \pi \alpha} \iiint_{T} z \alpha d z d y d x=\frac{3}{16 \pi} \int_{0}^{\pi} \int_{0}^{4} \int_{r / 2}^{2} z r d z d r d \theta \\
& =\frac{3}{16 \pi} \int_{0}^{\pi} \int_{0}^{4}\left[\frac{z^{2}}{2}\right]_{r / 2}^{2} r d r d \theta=\frac{3}{16} \int_{0}^{4}\left(2-\frac{r^{2}}{8}\right) r d r=\frac{3}{16}\left[r^{2}-\frac{r^{4}}{32}\right]_{0}^{4}=\frac{3}{4^{2}}\left(4^{2}-\frac{4^{2}}{2}\right)=3 / 2
\end{aligned}
$$

So we have $(\bar{x}, \bar{y}, \bar{z})=(0,4 / \pi, 3 / 2)$.
(b) Verify the mass of T using SPHERICAL coordinates.

Solution. We just need to determine the limits of integration is spherical coordinates. We have $0 \leq \theta \leq \pi$, since we are integrating over half a cone. The angle ϕ is measured from the z-axis down to
the surface of the cone, which we determined has $h=2$ and $r=4$. So $\phi=\tan ^{-1}(r / h)=\tan ^{-1}(2)$. Finally, $0 \leq \rho \leq(z=2)$, but in spherical coordinates $z=\rho \cos \phi=2$ or $0 \leq \rho \leq 2 \sec \phi$.

$$
\begin{aligned}
M & =\iiint_{T} \delta(x, y, z) d V=\alpha \iiint_{T} d V=\alpha \int_{0}^{\pi} \int_{0}^{\tan ^{-1}(2)} \int_{0}^{2 \sec \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\frac{\pi \alpha}{3} \int_{0}^{\tan ^{-1}(2)}\left[\rho^{3}\right]_{0}^{2 \sec \phi} \sin \phi d \phi=\frac{8 \pi \alpha}{3} \int_{0}^{\tan ^{-1}(2)} \sec ^{3} \phi \sin \phi d \phi=\frac{8 \pi \alpha}{3} \int_{0}^{\tan ^{-1}(2)} \sec ^{2} \phi \tan \phi d \phi \\
& =\frac{8 \pi \alpha}{3}\left[\frac{\tan ^{2} \phi}{2}\right]_{0}^{\tan ^{-1}(2)}=\frac{4 \pi \alpha}{3}(4-0)=16 \pi \alpha / 3
\end{aligned}
$$

3. Let C be the helix $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$ for $0 \leq t \leq 2 \pi$ and let $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
(a) Compute the arc length, s, of C.

Solution.

$$
s=\int_{C} d s=\int_{0}^{2 \pi} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t=\int_{0}^{2 \pi} \sqrt{(-\sin t)^{2}+(\cos t)^{2}+1} d t=2 \pi \sqrt{2}
$$

(b) Evaluate $\int_{C} f(x, y, z) d s$.

Solution.

$$
\begin{aligned}
\int_{C} f(x, y, z) d s & =\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s=\int_{0}^{2 \pi}\left(\cos ^{2} t+\sin ^{2} t+t^{2}\right) \sqrt{2} d t=\sqrt{2} \int_{0}^{2 \pi}\left(1+t^{2}\right) d t \\
& =\sqrt{2}\left[t+\frac{t^{3}}{3}\right]_{0}^{2 \pi}=\sqrt{2}\left(2 \pi+\frac{8 \pi^{3}}{3}\right)=2 \pi \sqrt{2}\left(1+\frac{4 \pi^{2}}{3}\right)
\end{aligned}
$$

(c) Evaluate $\frac{1}{s} \int_{C} f(x, y, z) d s$, i.e., the average value of $f(x, y, z)$ along C.

Solution. From (a) and (b), we see that $\frac{1}{s} \int_{C} f(x, y, z) d s=1+4 \pi^{2} / 3$
4. Compute $\int_{C} f(x, y, z) d s$ for the following curves and functions.
(a) $C: \mathbf{r}(t)=\left\langle 30 \cos ^{3} t, 30 \sin ^{3} t\right\rangle$ for $0 \leq t \leq \pi / 2$ and $f(x, y)=1+y / 3$.

Solution. First, $d s=\left|\mathbf{r}^{\prime}(t)\right| d t=\sqrt{\left(-90 \cos ^{2} t \sin t\right)^{2}+\left(90 \sin ^{2} t \cos t\right)^{2}} d t=90 \cos t \sin t d t$. Now we are in a position to compute the line integral.

$$
\begin{aligned}
\int_{C}(1+y / 3) d s & =\int_{0}^{\pi / 2}\left(1+10 \sin ^{3} t\right) 90 \cos t \sin t d t=\int_{0}^{\pi / 2}\left(90 \sin t+900 \sin ^{4} t\right) \cos t d t \\
& =\int_{u=0}^{1}\left(90 u+900 u^{4}\right) d u, \text { where } u=\sin t \\
& =\left[45 u^{2}+180 u^{5}\right]_{0}^{1}=225
\end{aligned}
$$

(b) $C: \mathbf{r}(t)=\left\langle t^{2} / 2, t^{3} / 3\right\rangle$ for $0 \leq t \leq 1$ and $f(x, y)=x^{2}+y^{2}$.

Solution. Again we start by computing $d s=\left|\mathbf{r}^{\prime}(t)\right| d t=t \sqrt{1+t^{2}} d t$. Then

$$
\begin{aligned}
\int_{C}\left(x^{2}+y^{2}\right) d s & =\int_{0}^{1}\left(\left(t^{2} / 2\right)^{2}+\left(t^{3} / 3\right)^{2}\right) t \sqrt{1+t^{2}} d t=\frac{1}{4} \int_{0}^{1} t^{4} \sqrt{1+t^{2}}(t d t)+\frac{1}{9} \int_{0}^{1} t^{6} \sqrt{1+t^{2}}(t d t) \\
& =\frac{1}{8} \int_{u=1}^{2}(u-1)^{2} \sqrt{u} d u+\frac{1}{18} \int_{u=1}^{2}(u-1)^{3} \sqrt{u} d u, \text { where } u=1+t^{2} \\
& =\frac{1}{8} \int_{1}^{2}\left(u^{5 / 2}-2 u^{3 / 2}+u^{1 / 2}\right) d u+\frac{1}{18} \int_{1}^{2}\left(u^{7 / 2}-3 u^{5 / 2}+3 u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\left[\frac{u^{7 / 2}}{28}-\frac{u^{5 / 2}}{10}+\frac{u^{3 / 2}}{12}+\frac{u^{9 / 2}}{81}-\frac{u^{7 / 2}}{21}+\frac{u^{5 / 2}}{15}-\frac{u^{3 / 2}}{27}\right]_{1}^{2} \\
& =\left[\frac{u^{9 / 2}}{81}-\frac{u^{7 / 2}}{84}-\frac{u^{5 / 2}}{30}+\frac{5 u^{3 / 2}}{108}\right]_{1}^{2} \\
& =\left(2^{9 / 2} / 81-2^{7 / 2} / 84-2^{5 / 2} / 30+5 \cdot 2^{3 / 2} / 108\right)-(1 / 81-1 / 84-1 / 30+5 / 108)
\end{aligned}
$$

(c) $C: \mathbf{r}(t)=\left\langle 1,2, t^{2}\right\rangle$ for $0 \leq t \leq 1$ and $f(x, y, z)=e^{\sqrt{z}}$.

Solution.

$$
\int_{C} e^{\sqrt{z}} d s=\int_{0}^{1} e^{t} \sqrt{0^{2}+0^{2}+(2 t)^{2}} d t=\int_{0}^{1} 2 t e^{t} d t=\left[2 t e^{t}-2 e^{t}\right]_{0}^{1}=2
$$

Note that we had to integrate by parts to anti-differentiate $2 t e^{t}$. (You let $u=2 t$ and $d v=e^{t}$.)
5. Determine whether or not the following vector fields are conservative. In the cases where \mathbf{F} is conservative, find a function φ such that $\mathbf{F}(x, y, z)=\nabla \varphi(x, y, z)$.
(a) $\mathbf{F}=\left(2 x y+z^{2}\right) \mathbf{i}+\left(x^{2}+2 y z\right) \mathbf{j}+\left(y^{2}+2 x z\right) \mathbf{k}$.

Solution. We first test to determine whether or not \mathbf{F} might be conservative. Letting $F_{1}=$ $2 x y+z^{2}, F_{2}=x^{2}+2 y z$, and $F_{3}=y^{2}+2 x y$ (as usual), it is easy to verify that $\partial F_{1} / \partial y=\partial F_{2} / \partial x$, $\partial F_{1} / \partial z=\partial F_{3} / \partial x$, and $\partial F_{2} / \partial z=\partial F_{3} / \partial y$. There are many ways to find a function $\varphi(x, y, z)$ such that $\nabla \varphi=\mathbf{F}$, which is what we need to find. Here is one method. We will take anit-derivatives of F_{1} with respect to x, F_{2} with respect to y, and F_{3} with respect to z respectively and then compare the results.

$$
\begin{aligned}
& \varphi(x, y, z)=\int\left(2 x y+z^{2}\right) d x=x^{2} y+x z^{2}+C_{1}(y, z) \\
& \varphi(x, y, z)=\int\left(x^{2}+2 y z\right) d y=x^{2} y+y^{2} z+C_{2}(x, z) \\
& \varphi(x, y, z)=\int\left(y^{2}+2 x z\right) d z=y^{2} z+x z^{2}+C_{3}(x, y)
\end{aligned}
$$

It is very important that $C_{1}(y, z)$ is function of y and z and not just a constant, since we are "undoing" a partial derivative where we considered y and z as constants (similarly for $C_{2}(x, z)$ and $\left.C_{3}(x, y)\right)$. If we examine the three versions of $\varphi(x, y, z)$ we see that each version has at least one term in common. Therefore, we might try $\varphi(x, y, z)=x^{2} y+y^{2} z+x z^{2}$, which turns out to work in this case.
(b) $\mathbf{F}=(\ln (x y)) \mathbf{i}+\left(\frac{x}{y}\right) \mathbf{j}+(y) \mathbf{k}$.

Solution. Note that \mathbf{F} is only defined for $x, y>0$ or $x, y<0$ and $F_{1}=\ln (x y), F_{2}=x / y$, and $F_{3}=y$ have continuous partials in these regions of the plane. Further, if $\mathbf{F}=\nabla \varphi$, and hence \mathbf{F} is conservative, then the mixed second partials of φ must be equal. But since $\partial F_{2} / \partial z=0$ and

(c) $\mathbf{F}=\left(e^{x} \cos y\right) \mathbf{i}+\left(-e^{x} \sin y\right) \mathbf{j}+(2 z) \mathbf{k}$.

Solution. By inspection, it is easy to see that $\varphi(x, y, z)=z^{2}+e^{x} \cos y$ is a potential function for F. Otherwise, one could use a method similar to (a).
(d) $\mathbf{F}=\left(3 x^{2} y\right) \mathbf{i}+\left(4 x y^{2}\right) \mathbf{j}$.

Solution. \mathbf{F} is not conservative because $\partial F_{1} / \partial y=3 x^{2} \neq 4 y^{2}=\partial F_{2} / \partial x$.
6. Let C_{1} be the piece of the parabola $y=x^{2}$ from $P=(0,0)$ to $Q=(1,1)$ and let C_{2} be the straight line from P to Q.
(a) Compute $\int_{C_{1}} y^{2} d x+(x-y) d y$.

Solution. First we need to parameterize C_{1}. Let $\mathbf{r}_{\mathbf{1}}(t)=\left\langle t, t^{2}\right\rangle$, for $0 \leq t \leq 1$. Then $\mathbf{r}_{\mathbf{1}}^{\prime}(t)=$ $\langle 1,2 t\rangle$. So

$$
\int_{C_{1}} y^{2} d x+(x-y) d y=\int_{0}^{1}\left(t^{2}\right)^{2} d t+\left(t-t^{2}\right) 2 t d t=\left[\frac{t^{5}}{5}+\frac{2 t^{3}}{3}+\frac{-t^{4}}{2}\right]_{0}^{1}=\frac{1}{5}+\frac{2}{3}-\frac{1}{2}=\frac{11}{30}
$$

(b) Compute $\int_{C_{2}} y^{2} d x+(x-y) d y$.

Solution. We parameterize C_{2} by $\mathbf{r}_{\mathbf{2}}(t)=\langle t, t\rangle$, for $0 \leq t \leq 1$. Then $\mathbf{r}_{\mathbf{2}}^{\prime}(t)=\langle 1,1\rangle$. So

$$
\int_{C_{2}} y^{2} d x+(x-y) d y=\int_{0}^{1} t^{2} d t+(t-t) d t=\int_{0}^{1} t^{2} d t=\left[t^{3} / 3\right]_{0}^{1}=1 / 3
$$

(c) Based on your answers to (a) and (b), is the vector field $\mathbf{F}(x, y)=\left\langle y^{2}, x-y\right\rangle$ conservative? Why or why not?

Solution. If $\mathbf{F}(x, y)=\left\langle y^{2}, x-y\right\rangle$ were conservative, then the integral from A to B would have been independent of path. But note that the answers to (a) and (b) differ, therefore \mathbf{F} is not conservative.
(d) Let $C=C_{1}-C_{2}$ denote the end-to-end concatenation of C_{1} with its given orientation and C_{2} with the reverse orientation. Compute $\int_{C} x y^{2} d x+x^{2} y d y$.

Solution. Note that the vector field $\mathbf{F}=\left\langle x y^{2}, x^{2} y\right\rangle$ is conservative, since $\partial\left(x y^{2}\right) / \partial y=2 x y=$ $\partial\left(x^{2} y\right) / \partial x$. Since C is a closed path and \mathbf{F} is conservative, we know that

$$
\int_{C} x y^{2} d x+x^{2} y d y=\int_{(0,0)}^{(0,0)} x y^{2} d x+x^{2} y d y=\varphi(0,0)-\varphi(0,0)=0
$$

(Clearly $\varphi(x, y)=\left(x^{2} y^{2}\right) / 2$ gives a potential function for \mathbf{F}. However it does not matter that we can find a potential function for $\mathbf{F}=\left\langle x y^{2}, x^{2} y\right\rangle$, we only needed that \mathbf{F} was conservative.)

