
M263(2004) Solutions—Assignment 6
(c) 2004, UBC Mathematics Department

1. The first calculation relies on the substitution u = y2, du = 2y dy.

I =
∫ 2

0

∫ y

0

y2exy dx dy =
∫ 2

0

y2

[
exy

y

]y
x=0

dy =
∫ 2

0

[yey
2 − y] dy

=
∫ 2

0

yey
2
dy −

∫ 2

0

y dy = 1
2

[
ey

2 − y2

]2

y=0

= 1
2 [e4 − 4]− 1

2 [1− 0] =
e4 − 5

2
.

The second is completely straightforward:

J =
∫ π

0

∫ x

−x
cos y dy dx =

∫ π

0

[
sin y

]x
y=−x

dx

=
∫ π

0

2 sin x dx = 2
[
− cos x

]π
x=0

= 4.

2. (a) Recognize I =
∫∫
D

1 dA = area(D), where D = D1 ∪D2 ∪D3.

D1: Projection along y (inner variable) onto x (outer variable) fills 1/
√

2 ≤ x ≤ 1;
vertical filament at x runs from low y =

√
1− x2 (a circular arc) up to high y = x

(a line). See sketch.

D2: Projection along y onto x fills 1 ≤ x ≤
√

2; vertical filament at x runs from low
y = 0 (a line) to high y = x (a line). See sketch.

D3: Projection along x onto y fills 0 ≤ y ≤
√

2; horizontal fibre at level y runs from low
x =
√

2 (a line) to high x =
√

4− y2 (a circular arc). See sketch.
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(b) When f(x, y) = K, I[f ] =
∫∫
D

f(x, y) dA = K

∫∫
D

dA = K Area(D). So, by basic

geometry,

I[f ] = K · 1
8
[
πR2 − πr2

]
r=1, R=2

=
3π
8
K.

(c) In polar coordinates, region D has the simple description

0 ≤ θ ≤ π

4
, 1 ≤ r ≤ 2.

Also,
√
x2 + y2 = r. So when f(x, y) =

√
x2 + y2,

I[f ] =
∫∫
D

√
x2 + y2 dA =

∫ π/4

θ=0

∫ 2

r=1

(r) r dr dθ =
π

4

[
r3

3

]2

r=1

=
7π
12
.
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3. For I, the domain lies in the strip 0 ≤ y ≤ 1, to the right of x = y and the left of x = 1.
Equivalently, it fills the part of the strip 0 ≤ x ≤ 1 above y = 0 and below y = x. This gives

I =
∫ 1

x=0

∫ x

y=0

e−x
2
dy dx =

∫ 1

x=0

e−x
2
∫ x

y=0

dy dx =
∫ 1

x=0

e−x
2
x dx

=
∫ 1

u=0

e−u
du

2
= −1

2
[
e−u

]1
u=0

= 1
2

(
1− e−1

)
.

For J , the domain lies in the strip 0 ≤ y ≤ π/2, to the right of x = y and to the left of
x = π/2. That’s another triangle. It can be re-described as the part of the strip 0 ≤ x ≤ π/2
with left edge y = 0 and right edge y = x. Hence

J =
∫ π/2

x=0

sinx
x

(∫ x

y=0

dy

)
dx =

∫ π/2

x=0

(
sinx
x

)
x dx =

∫ π/2

x=0

sinx dx = 1.

For K, it’s a similar story: the domain lies in the vertical strip 0 ≤ x ≤ 1, above y = x and
below y = 1. Equivalently, it’s the part of the horizontal strip 0 ≤ y ≤ 1 above y = x and
below y = 1. Hence

K =
∫ 1

y=0

∫ y

x=0

yp

x2 + y2
dx dy =

∫ 1

y=0

yp−2

[ ∫ y

x=0

1
(x/y)2 + 1

dx

]
dy

Let u(x) = x/y, du = dx/y in the inner integral: the result is

K =
∫ 1

y=0

yp−2

[ ∫ 1

u=0

1
u2 + 1

(y du)
]
dy =

∫ 1

y=0

yp−1

[
tan−1(u)

]1

u=0

dy

=
π

4

∫ 1

y=0

yp−1 dy =
π

4p
.

The three domains described above are shown here. (Note that π/2 ≈ 1.57.)
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4. Call the given triangle T : it lies in the strip 0 ≤ y ≤ π1/4, to the right of x = 0 and left of
x = y. So the volume we want is

V =
∫∫
T

z dA =
∫ π1/4

y=0

∫ y

x=0

x2 sin(y4) dx dy =
∫ π1/4

y=0

sin(y4)
[
x3

3

]y
x=0

dy

=
1
3

∫ π1/4

y=0

sin(y4)y3 dy =
1
12

∫ π

u=0

sin(u) du =
1
6
.

5. Projecting region D along the y-direction onto the x-axis gives the iterated integrals below:

Area(D) =
∫∫
D

1 dA =
∫ ∞
x=0

∫ e−sx

y=0

dy dx =
∫ ∞
x=0

e−sx dx =
[
e−sx

(−s)

]x→∞
x=0

=
1
s
,∫∫

D

x dA =
∫ ∞
x=0

∫ e−sx

y=0

x dy dx =
∫ ∞
x=0

xe−sx dx =
[
x
e−sx

(−s) −
e−sx

(−s)2

]x→∞
x=0

=
1
s2∫∫

D

y dA =
∫ ∞
x=0

∫ e−sx

y=0

y dy dx =
1
2

∫ ∞
x=0

e−2sx dx =
1
2

[
e−2sx

(−2s)

]x→∞
x=0

=
1
4s
.
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In view of the given definitions, we deduce that x =
1/s2

1/s
=

1
s
, y =

1/(4s)
1/s

=
1
4
.

6. In the plots below, corresponding regions are shaded to emphasize their relationship.

(i) r = 1 + sin θ: This is a cardioid.
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(ii) r = 1 + 2 cos θ: Here a small interval of angles produces negative r-values, and these
cause an inner loop in the polar plot.
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(iii) r = cos 3θ: This is a three-leaved rose, traced twice in every interval of length 2π.
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(iv) r2 = 4 sin 3θ: Here we obtain a real r-value only when the polar angle obeys sin 3θ ≥ 0.
But there are no sign restrictions on r, so we get r = ±2

√
sin 3θ for all θ of this form.
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7. The perimeter of the disk meets the vertical line x = 1 when 1 + y2 = 2, i.e., y = ±1. So in
polar coordinates the disk segment is characterized by these inequalities:

S : −π
4
≤ θ ≤ π

4
,

1
cos θ

≤ r ≤
√

2.

File “hw06”, version of 26 October 2004, page 3. Typeset at 15:24 November 3, 2004.



4 UBC M263 Solutions #6

∫∫
S

x dA =
∫ π/4

θ=−π/4

∫ √2

r=1/ cos θ

[r cos θ] r dr dθConsequently

=
∫ π/4

θ=−π/4
cos θ

[
r3

3

]√2

r=1/ cos θ

dθ

=
1
3

∫ π/4

θ=−π/4

(
2
√

2 cos θ − 1
cos2 θ

)
dθ

=
1
3

[
2
√

2 sin θ − tan θ
]π/4
θ=−π/4

=
2
3
.

8. There is plenty of symmetry here. If the square is oriented so its diagonals lie on the lines
y = ±x, then these lines also divide the disk into regions where the nearest side of the square
is easy to predict. The average distance over the whole disk will equal the average distance
for points in the top wedge only. The polar inequalities characterizing this wedge (name it
“D”) are

D :
π

4
≤ θ ≤ 3π

4
, 0 ≤ r ≤ 1.

The distance from a point (x, y) in this wedge to the line y = 1 is simply f(x, y) = 1− y: the
average of this function over D is approximately 0.3998, because

f =

∫∫
D

f dA∫∫
D

1 dA
=

1
π/4

∫ 3π/4

θ=π/4

∫ 1

r=0

[1− r sin θ] r dr dθ

=
4
π

∫ 3π/4

θ=π/4

[
1
2
− 1

3
sin θ

]
dθ =

4
π

[
1
2
· π

2
− 1

3

√
2
]

= 1− 4
√

2
3π

.

9. The paraboloid meets the xy-plane where z = 0, i.e., where x2 + y2 = 1. Hence the desired
volume lies above a sector in the xy-plane, whose straight sides lie along rays through the
origin associated with angles −π/4 and π/3. In polar coordinates, this wedge can be described
by

D : −π
4
≤ θ ≤ π

3
, 0 ≤ r ≤ 1.

The desired volume is

V =
∫∫
D

(1− x2 − y2) dA =
∫ π/3

θ=−π/4

∫ 1

r=0

(1− r2)r dr dθ

=
7π
12

[
1
2
− 1

4

]
=

7π
48
.

10. (a) Here I =
∫ 3

−3

∫ √9−x2

−
√

9−x2

∫ √9−x2−y2

0

z
√
x2 + y2 + z2 dz dy dx is an iteration of the triple

integral

I =
∫∫∫

R

z
√
x2 + y2 + z2 dV,

where R is the top half of a solid sphere with radius 3 centred at the origin. In spherical
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coordinates,

I =
∫ π/2

φ=0

∫ 2π

θ=0

∫ 3

ρ=0

[ρ cos φ]
√
ρ2 ρ2 sinφdρ dθ dφ

=

(∫ π/2

φ=0

sinφ cos φdφ

)(∫ 2π

θ=0

dθ

)∫ 3

ρ=0

ρ4 dρ

=
[

1
2 sin2 φ

]π/2
φ=0

(2π)
(

35

5

)
=

243π
5

.

(b) Here J =
∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(
x2 + y2 + z2

)
dz dx dy is an iteration of the triple

integral

J =
∫∫∫

R

(
x2 + y2 + z2

)
dV,

where R is a solid region in the first octant. The solid lies above the cone z =
√
x2 + y2

and below the sphere x2 + y2 + z2 = 18. To check this, note that the cone meets the
sphere at the height where z2 + z2 = 18, i.e., z = 3, and the ring in which they intersect
obeys x2 + y2 = 9, as reflected in the limits of the outer double integral. The vertex
angle of the cone (between k and a line on the slanted surface) is π/4, so in spherical
coordinates

J =
∫ π/4

φ=0

∫ π/2

θ=0

∫ √18

ρ=0

(
ρ2
)
ρ2 sinφdρ dθ dφ

=

(∫ π/4

φ=0

sinφdφ

)(∫ π/2

θ=0

dθ

)∫ 3
√

2

ρ=0

ρ4 dρ

=
[
− cos φ

]π/4
φ=0

(
π

2

)(
(3
√

2)5

5

)
=

486π
5

(
√

2− 1).

11. Use spherical coordinates, where ρ = |x| and dV = ρ2 sinφdρ dθ dφ:

Q =
∫ π

φ=0

∫ 2π

θ=0

∫ ∞
ρ=0

ρe−ρ
2
ρ2 sinφdρ dθ dφ

=
(∫ π

φ=0

sinφdφ
)(∫ 2π

θ=0

dθ

)∫ ∞
ρ=0

ρ2e−ρ
2
ρ dρ

= 4π
∫ ∞
u=0

ue−u
(
du

2

)
(sub u = ρ2, du = 2ρ dρ)

= 2π
[
− ue−u

∣∣∣∣∞
u=0

−
∫ ∞

0

(
− e−u

)
du

]
= 2π.

The final step involved integration by parts and two famous limits: both e−u → 0 and
ue−u → 0 as u→ +∞.
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