
MATH 263 ASSIGNMENT 5 SOLUTIONS

1) If t0 is a local minimum or maximum of the smooth function f(t) of one variable (t runs over all real

numbers) then f ′(t0) = 0. Derive an analogous necessary condition for ~x0 to be a local minimum or

maximium of the smooth function g(~x) restricted to points on the line ~x = ~a + t~d . The test should

involve the gradient of g(~x).

Solution. Define f(t) = g(~a + t~d) and determine t0 by ~x0 = ~a + t0~d. Then f ′(t) = ~∇g(~a + t~d) · ~d. Then

~x0 is a local max or min of the restriction of g to the specified line if and only if t0 is a local max or min

of f(t). If so, f ′(t0) necessarily vanishes. So if ~x0 is a local max or min of the restriction of g to the

specified line, then ~∇g(x0) ⊥ ~d and ~x0 = ~a + t0 ~d for some t0. The second condition is to ensure that

x0 lies on the line.

2) Find the maximum and minimum values of f(x, y) = xy − x3y2 when (x, y) runs over the square

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Solution.

f(x, y) = xy − x3y2 fx(x, y) = y − 3x2y2 fy(x, y) = x − 2x3y

First, we find the critical points

fx = 0 ⇐⇒ y(1 − 3x2y) = 0 ⇐⇒ y = 0 or 3x2y = 1

fy = 0 ⇐⇒ x(1 − 2x2y) = 0 ⇐⇒ x = 0 or 2x2y = 1

If y = 0, we cannot have 2x2y = 1, so we must have x = 0. If 3x2y = 1, we cannot have x = 0, so we

must have 2x2y = 1. Dividing gives 1 = 3x2y
2x2y

= 3
2 which is impossible. So the only critical point in the

square is (0, 0). There f = 0.

Next, we look at the part of the boundary with x = 0. There f = 0.

Next, we look at the part of the boundary with y = 0. There f = 0.

Next, we look at the part of the boundary with x = 1. There f = y − y2. As d
dy

(y − y2) = 1 − 2y, the

max and min of y − y2 for 0 ≤ y ≤ 1 must occur either at y = 0, where f = 0, or at y = 1
2 , where

f = 1
4 , or at y = 1, where f = 0.

Next, we look at the part of the boundary with y = 1. There f = x − x3. As d
dx

(x − x3) = 1− 3x2, the

max and min of x− x3 for 0 ≤ x ≤ 1 must occur either at x = 0, where f = 0, or at x = 1√
3
, where

f = 2
3
√

3
, or at x = 1, where f = 0.

All together, we have the following candidates for max and min

point (0, 0) (0, 0 ≤ y ≤ 1) (0 ≤ x ≤ 1, 0) (1, 0) (1, 1
2 ) (1, 1) (0, 1) ( 1√

3
, 1) (1, 1)

value of f 0 0 0 0 1
4 0 0 2

3
√

3
0

The largest and smallest values of f in this table are min= 0, max= 2
3
√

3
≈ 0.385 .

3) The temperature at all points in the disc x2 + y2 ≤ 1 is given by T (x, y) = (x + y)e−x2−y2

. Find the

maximum and minimum temperatures at points of the disc.

Solution.

T (x, y) = (x + y)e−x2−y2

Tx(x, y) = (1 − 2x2 − 2xy)e−x2−y2

Ty(x, y) = (1 − 2xy − 2y2)e−x2−y2
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First, we find the critical points

Tx = 0 ⇐⇒ 2x(x + y) = 1

Ty = 0 ⇐⇒ 2y(x + y) = 1

As x + y may not vanish, this forces x = y and then x = y = ± 1
2 . So the only critical points are ( 1

2 , 1
2 )

and (− 1
2 ,− 1

2 ).

On the boundary x = cos t and y = sin t, so T = (cos t + sin t)e−1. This is a periodic function and so

takes its max and min at zeroes of dT
dt

=
(

− sin t + cos t
)

e−1. That is, when sin t = cos t, which forces

sin t = cos t = ± 1√
2
. All together, we have the following candidates for max and min

point ( 1
2 , 1

2 ) (− 1
2 ,− 1

2 ) ( 1√
2
, 1√

2
) (− 1√

2
,− 1√

2
)

value of f 1√
e
≈ 0.61 − 1√

e

√
2

e
≈ 0.52 −

√
2

e

The largest and smallest values of T in this table are min= − 1√
e
, max= 1√

e
.

4) Find the high and low points of the surface z =
√

x2 + y2 with (x, y) varying over the square |x| ≤ 1,

|y| ≤ 1 . Discuss the values of zx, zy there. Do not evaluate any derivatives in answering this question.

Solution. The surface is a cone. The minimum height is at (0, 0, 0). The cone has a point there and

the derivatives zx and zy do not exist. The maximum height is achieved when (x, y) is as far as possible

from (0, 0). The highest points are at (±1,±1,
√

2). There zx and zy exist but are not zero. These points

would not be the highest points if it were not for the restriction |x|, |y| ≤ 1.

5) Use the method of Lagrange multipliers to find the maximum and minimum values of the function

f(x, y, z) = x + y − z on the sphere x2 + y2 + z2 = 1.

Solution. Define L(x, y, z, λ) = x + y − z − λ(x2 + y2 + z2 − 1). Then

0 = Lx = 1 − 2λx =⇒ x = 1
2λ

0 = Ly = 1 − 2λy =⇒ y = 1
2λ

0 = Lz = −1 − 2λx =⇒ z = − 1
2λ

0 = Lλ = x2 + y2 + z2 − 1 =⇒ 3
(

1
2λ

)2 − 1 = 0 =⇒ λ = ±
√

3
2

The critical points are
(

− 1√
3
,− 1√

3
, 1√

3

)

, where f = −
√

3 and
(

1√
3
, 1√

3
,− 1√

3

)

, where f =
√

3. So,

the max is f =
√

3 and the min is f = −
√

3 .

6) Find a, b and c so that the volume 4πabc/3 of an ellipsoid x2

a2 + y2

b2
+ z2

c2 = 1 passing through the point

(1, 2, 1) is as small as possible.

Solution. Define L(a, b, c, λ) = 4
3πabc − λ( 1

a2 + 4
b2

+ 1
c2 − 1). Then

0 = La = 4
3πbc + 2λ

a3 =⇒ 3
2π

λ = −a3bc

0 = Lb = 4
3πac + 8λ

b3
=⇒ 3

2π
λ = − 1

4ab3c

0 = Lc = 4
3πab + 2λ

c3 =⇒ 3
2π

λ = −abc3

0 = Lλ = 1
a2 + 4

b2
+ 1

c2 − 1

The equations − 3
2π

λ = a3bc = 1
4ab3c force b = 2a (since we want a, b, c > 0). The equations − 3

2π
λ =

a3bc = abc3 force a = c. Hence

0 = 1
a2 + 4

b2
+ 1

c2 − 1 = 3
a2 − 1 =⇒ a = c =

√
3, b = 2

√
3
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7) Find the ends of the major and minor axes of the ellipse 3x2 − 2xy + 3y2 = 4.

Solution. Let (x, y) be a point on 3x2 − 2xy + 3y2 = 4. This point is at the end of a major axis

when it maximizes its distance from the centre, (0, 0) of the ellipse. It is at the end of a minor axis

when it minimizes its distance from (0, 0). So we wish to maximize and minimize x2 + y2 subject to

3x2 − 2xy + 3y2 = 4. Define L(x, y, λ) = x2 + y2 − λ(3x2 − 2xy + 3y2 − 4). Then

0 = Lx = 2x − λ(6x − 2y) =⇒ (1 − 3λ)x + λy = 0 (1)

0 = Ly = 2y − λ(−2x + 6y) =⇒ λx + (1 − 3λ)y = 0 (2)

0 = Lλ = 3x2 − 2xy + 3y2 − 4

Note that λ cannot be zero because if it is, (1) forces x = 0 and (2) forces y = 0. But (0, 0) is not on

the ellipse and so is not an acceptable solution. As λ 6= 0, equation (1) gives y = − 1−3λ
λ

x. Subbing this

into equation (2) gives λx − (1−3λ)2

λ
x = 0. To get a nonzero (x, y) we need

λ− (1−3λ)2

λ
= 0 ⇐⇒ λ2 − (1− 3λ)2 = 0 ⇐⇒ [λ− (1− 3λ)][λ + (1− 3λ)] = 0 ⇐⇒ [4λ− 1][1− 2λ] = 0

So λ must be either 1
2 or 1

4 . Subbing these into either (1) or (2) gives

λ = 1
2 =⇒ − 1

2x + 1
2y = 0 =⇒ x = y =⇒ 3x2 − 2x2 + 3x2 = 4 =⇒ x = ±1

λ = 1
4 =⇒ 1

4x + 1
4y = 0 =⇒ x = −y =⇒ 3x2 + 2x2 + 3x2 = 4 =⇒ x = ± 1√

2

The ends of the minor axes are ±
(

1√
2
,− 1√

2

)

. The ends of the major axes are ±(1, 1) .

8) Find the triangle of largest area that can be inscribed in the circle x2 + y2 = 1.

Solution. Inscribe the base of the triangle and choose a coordinate system in which the base is horizontal.

Pick the vertex of the triangle. For a given base, the triangle has maximum height (and hence area) if

the vertex is chosen to be at the “top” of the circle, as shown.

1

1h − 1

b/2

(

b
2 ,−(h − 1)

)

We are to mazimize A = 1
2bh subject to (h − 1)2 +

(

b
2

)2
= 1. Define

L(b, h, λ) = 1
2bh − λ

(

(h − 1)2 +
(

b
2

)2 − 1
)

Then

0 = Lb = 1
2h − 1

2λb ⇒ b2

4 = h(h − 1)

0 = Lh = 1
2b − 2λ(h − 1) ⇒ λ = b

4(h−1)

0 = Lλ = −(h − 1)2 −
(

b
2

)2
+ 1 ⇒ (h − 1)2 + h(h − 1) = 1

⇒ 2h2 − 3h = 0
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So h must be either 0 (which cannot give maximum area) or h = 3
2 and b =

√
3. All three sides of the

triangle have length
√

3, so the triangle is equilateral (surprise!).

9) The temperature gradient, at each point (x, y) of the disk x2 + y2 ≤ 25, is a strictly positive multiple of

(6 + x, 8 + y). Find the hottest point of the disk.

Solution. On the disk −5 ≤ x ≤ 5, so that 6 + x can never be zero and the temperature gradient can

never vanish. Thus the temperature has no critical points in the disk and the maximum and minimum

temperatures must occur on the boundary x2 + y2 = 25. By the method of Lagrange multipliers, the

temperature gradient must be parallel to the normal vector to x2 + y2 = 25, which is (2x, 2y), at any

extremal point on x2 + y2 = 25. Hence at any extremal point there must be a λ such that

6 + x = 2λx =⇒ x = 6
2λ−1

8 + y = 2λy =⇒ y = 8
2λ−1

x2 + y2 = 25 =⇒ 36
(2λ−1)2 + 64

(2λ−1)2 = 25 =⇒ (2λ − 1) = ±2 =⇒ (x, y) = ±(3, 4)

Since Tx = 6 + x > 0 and Ty = 8 + y > 0, the temperature increases to the right and upward so that the

temperature at (3, 4) must be higher than the temperature at (−3,−4). The hottest point is (3, 4) .

10) For each of the following, evaluate the given double integral without using iteration. Instead, interpret

the integral as an area or some other physical quantity.

a)
∫∫

R
dx dy where R is the rectangle −1 ≤ x ≤ 3, −4 ≤ y ≤ 1.

b)
∫∫

D
(x + 3)dx dy, where D is the half disc 0 ≤ y ≤

√
4− x2.

c)
∫∫

R
(x + y)dx dy where R is the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b.

d)
∫∫

R

√

a2 − x2 − y2 dx dy where R is the region x2 + y2 ≤ a2.

e)
∫∫

R

√

b2 − y2 dx dy where R is the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b.

Solution. a)
∫∫

R
dx dy is the area of a rectangle with sides of lengths 4 and 5. This area is

∫∫

R
dx dy = 4 × 5 = 20 .

b)
∫∫

D
x dx dy = 0 because x is odd under reflection about the y–axis, while the domain of integration

is symmetric about the y–axis.
∫∫

D
3 dx dy is the three times the area of a half disc of radius 2. So,

∫∫

D
(x + 3)dx dy = 3 × 1

2 × π22 = 6π .

c)
∫∫

R
x dx dy/

∫∫

R
dx dy is the average value of x in the rectangle R, namely a

2 . Similarly,
∫∫

R
y dx dy/

∫∫

R
dx dy is the average value of y in the rectangle R, namely b

2 .
∫∫

R
dx dy is area of

the rectangle R, namely ab. So,
∫∫

S
(x + y)dx dy = 1

2ab(a + b) .

d)
∫∫

R

√

a2 − x2 − y2 dx dy is the volume of the region, V , with 0 ≤ z ≤
√

a2 − x2 − y2, x2 + y2 ≤ a2.

This is the top half of a sphere of radius a. So,
∫∫

R

√

a2 − x2 − y2 dx dy = 2
3πa3 .

e)
∫∫

R

√

b2 − y2 dx dy is the volume of the region, V , with 0 ≤ z ≤
√

b2 − y2, 0 ≤ x ≤ a, 0 ≤ y ≤ b.

y2 + z2 ≤ b2 is a cylinder of radius b centered on the x axis. y2 + z2 ≤ b2, y ≥ 0, z ≥ 0 is one quarter

of this cylinder. It has cross–sectional area 1
4πb2. V is the part of this quarter–cylinder with 0 ≤ x ≤ a.

It has length a and cross–sectional area 1
4πb2. So,

∫∫

R

√

b2 − y2 dx dy = 1
4πab2 .
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