
Math 263 Assignment #4 Solutions

1. Find and classify the critical points of each of the following functions:

(a) f(x, y, z) = x2 + yz − x − 2y − z + 7 (c) f(x, y) = e−x2
−y2

(1 − ex2

)
(b) f(x, y) = (x + y)3 − (x − y)(x − 5y) (d) f(x, y) = 2 sin x cos y

(a) For f(x, y, z) = x2 + yz − x − 2y − z + 7, setting ∇f(x, y, z) = 0 gives the system of equations:

0 = f1(x, y, z) = 2x − 1

0 = f2(x, y, z) = z − 2

0 = f3(x, y, z) = y − 1

which immediately gives x = 1/2, z = 2, and y = 1 and so the single critical point (1/2, 1, 2).

To classify this critical point using the second derivative test, we first calculate the second-order
partial derivatives:

f11(x, y, z) = 2 f12(x, y, z) = 0 f13 = 0
f22(x, y, z) = 0 f23 = 1

f33 = 0

which give the Hessian

H(x, y, z) =





2 0 0
0 0 1
0 1 0





for all points (x, y, z) and so in particular for our critical point. Using MATLAB, we find eig(H)

gives eigenvalues −1, 1, and 2, and since there are positive and negative eigenvalues, the matrix
is indefinite and so (1/2, 1, 2) is a saddle point.

Alternatively, we could consider the change in f for small changes dx and dy away from the
critical point:

∆f = f(1/2 + dx, 1 + dy, 2 + dz) − f(1/2, 1, 2)

= [(1/2 + dx)2 + (1 + dy)(2 + dz) − (1/2 + dx) − 2(1 + dy) − (2 + dz) + 7]

− [(1/2)2 + (1)(2) − (1/2) − 2(1) − 2 + 7]

= 1/4 + dx + dx2 + 2 + 2dy + dz + dy dz − 1/2 − dx − 2 − 2dy − 2 − dz + 7

− 1/4 − 2 + 1/2 + 2 + 2 − 7

= dx2 + dydz

If we fixed dx = 0, then dy > 0 and dz > 0 would give ∆f > 0 while dy > 0 and dz < 0 would
give ∆f < 0. Therefore, (1/2, 1, 2) is a saddle point.

(b) For f(x, y) = (x + y)3 − (x − y)(x − 5y), setting ∇f(x, y) = 0 gives the system:

0 = f1(x, y) = 3(x + y)2 − (x − 5y) − (x − y) = 3(x + y)2 − 2x + 6y

0 = f2(x, y) = 3(x + y)2 + (x − 5y) − (x − y)(−5) = 3(x + y)2 + 6x − 10y

We could solve one equation for y in terms of x and substitute it into the other, but if we subtract
the equations first, we eliminate the 3(x + y)2 term:

0 = −8x + 16y

Solving this for x gives x = 16y/8 = 2y, and substituting this into one of the original equations,
say the first, will eliminate x:

0 = 3(2y + y)2 − 2(2y) + 6y = 27y2 + 2y = y(27y + 2)

This has two solutions: y = 0 and y = −2/27. Since we know x = 2y, this gives the two solutions
(0, 0) and (−4/27,−2/27).
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To classify these points using the second derivative test, we calculate the Hessian at an arbitrary
point (x, y) as:

H(x, y) =

[

6(x + y) − 2 6(x + y) + 6
6(x + y) + 6 6(x + y) − 10

]

For critical point (0, 0), we see

H(0, 0) =

[

−2 6
6 −10

]

which has det(H) = −16, so (0, 0) is a saddle point.

For critical point (−4/27,−2/27), we see

H(−4/27,−2/27) =

[

−4/3 − 2 −4/3 + 6
−4/3 + 6 −4/3 − 10

]

=

[

−10/3 14/3
14/3 −34/3

]

which has det(H) = 16 with top-left element −10/3 < 0, so (−4/27,−2/27) is a local maximum.

(c) For f(x, y) = e−x2
−y2

(1 − ex2

), setting ∇f(x, y) = 0 gives the system

0 = f1(x, y) = −2xe−x2
−y2

(1 − ex2

) + e−x2
−y2

(−2xex2

) = −2xe−x2
−y2

0 = f2(x, y) = −2ye−x2
−y2

(1 − ex2

)

Since the exponential function is never 0, the only solution to the first equation must be x = 0.
Substituting this into the second equation gives

0 = −2ye−y2

(1 − 1) = 0

but this equation is satisfied for all y, so all points of the form (0, b) for any b are critical.

If we try to use the second derivative test to classify these points, we discover that det(H) = 0,
so the test is inconclusive. We must resort to the brute-force method, looking at changes in f for
small changes dx and dy away from the critical point. For the critical point (0, b), we have

∆f = f(dx, b + dy) − f(0, b)

= e−dx2
−(b+dy)2

(

1 − e−dx2
)

− e−b2
(

1 − e0
)

= e−(b+dy)2
(

e−dx2 − 1
)

But e−(b+dy)2 is always positive while dx2 ≥ 0 ensures that e−dx2 ≤ 1. Therefore, ∆f ≤ 0 for all
small dx and dy from which it follows that all points (0, b) are local maxima.

(d) For f(x, y) = 2 sin x cos y, setting ∇f(x, y) = 0 gives the system:

0 = f1(x, y) = 2 cos x cos y

0 = f2(x, y) = −2 sin x sin y

The first equation will be satisfied whenever cosx = 0 or cos y = 0. Let us consider these cases
separately:

• Case 1: cos x = 0

When cos x = 0, that implies sinx = ±1. Therefore, the second equation 0 = −2 sin x sin y
forces sin y = 0. Thus, the critical points for this case are all those (x, y) where cos x = 0
and sin y = 0 or, in other words, the points (π/2 + mπ, nπ) for m, n any integers.

• Case 2: cos y = 0

Similarly, this implies sin y = ±1, so the second equation 0 = −2 sin x sin y forces sin x = 0,
and the critical points for this case are those where cos y = 0 and sinx = 0 or, in other
words, the points (mπ, π/2 + nπ) for m, n any integers.
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To classify these points, we calculate the Hessian at an arbitrary (x, y):

H(x, y) =

[

−2 sin x cos y −2 cos x sin y
−2 cos x sin y −2 sin x cos y

]

Now, we have to carefully examine all the possible cases and subcases.

For points of the form (π/2 + mπ, nπ), we have, as mentioned above, cos x = 0 and sin y = 0,
but the Hessian also depends on sinx = ±1 and cos y = ±1, so we have to consider all four
subcases:

• Subcase 1(a): sinx = 1, cos x = 0, sin y = 0, cos y = 1

These are the points (π/2 + 2πm, 2πn) for all integers m and n, and the Hessian evaluates
to:

H =

[

−2 0
0 −2

]

which has det(H) = 4 with top-left element −2 < 0, so these are local maxima.

• Subcase 1(b): sinx = 1, cos x = 0, sin y = 0, cos y = −1

These are the points (π/2+2πm, π+2πn) for all integers m and n, and the Hessian evaluates
to:

H =

[

2 0
0 2

]

which has det(H) = 4 with top-left element 2 > 0, so these are local minima.

• Subcase 1(c): sin x = −1, cos x = 0, sin y = 0, cos y = 1

These are the points (3π/2 + 2πm, 2πn) for all integers m and n, and the Hessian evaluates
to:

H =

[

2 0
0 2

]

which has det(H) = 4 with top-left element 2 > 0, so these are local minima

• Subcase 1(d): sinx = −1, cos x = 0, sin y = 0, cos y = −1

These are the points (3π/2+2πm, π+2πn) for all integers m and n, and the Hessian evaluates
to:

H =

[

−2 0
0 −2

]

which has det(H) = 4 with top-left element −2 < 0, so these are local maxima.

For points of the form (mπ, π/2 + nπ), we have, as mentioned above, cos y = 0 and sinx = 0.
Even though the Hessian also depends on sin y = ±1 and cos x = ±1, it’s not hard to see that
we’ll always have:

H =

[

0 −2
−2 0

]

or H =

[

0 2
2 0

]

In either case, det(H) = −4, so all points of this form are saddle points.
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2. Find and classify all critical and singular points of f(x, y) = 7
√

x2 + y2 − 2(x − 1)2 + (x + 1)2.

The gradient is given by

∇f(x, y) =

[

f1(x, y)
f2(x, y)

]

=





7x√
x2+y2

− 2x + 6

7y√
x2+y2





Thus, ∇f(x, y) does not exist iff x2 + y2 ≤ 0 iff (x, y) = (0, 0), so the only singular point is (0, 0).

Setting ∇f(x, y) = 0 gives the system:

0 =
7x

√

x2 + y2
− 2x + 6

0 =
7y

√

x2 + y2

The second equation implies y = 0, and substituting into the first equation gives

0 =
7x√
x2

− 2x + 6 =
7x

|x| − 2x + 6

Considering the two cases separately:

• Case 1: x < 0. Then 0 = −7 − 2x + 6 = −1 − 2x giving x = −1/2.

• Case 2: x ≥ 0. Then 0 = +7 − 2x + 6 = 13 − 2x giving x = 13/2.

gives the two critical points (−1/2, 0) and (13/2, 0).

To classify the critical points, we calculate the second-order partials:

f11 =
7
√

x2 + y2 − 7x2√
x2+y2

x2 + y2
− 2 =

7y2

(x2 + y2)3/2
− 2

f12 =
−7xy

(x2 + y2)3/2

f22 =
7
√

x2 + y2 − 7y2√
x2+y2

x2 + y2
=

7x2

(x2 + y2)3/2

which give the Hessian matrices

H(−1/2, 0) =

[

−2 0
0 14

]

H(13/2, 0) =

[

−2 0
0 14/13

]

both of which have negative determinant. Therefore, both (−1/2, 0) and (13/2, 0) are saddle
points.

The singular point (0, 0) must be classified by considering small movements dx and dy away
from the point:

∆f = f(dx, dy) − f(0, 0) = 7
√

dx2 + dy2 − 2(dx − 1)2 + (dx + 1)2 + 1

= 7
√

dx2 + dy2 + (6 − dx)dx

But, 7
√

dx2 + dy2 ≥ 7
√

dx2 = 7|dx| ≥ −(6 − dx)dx for all small dx whether positive or negative.
Therefore, ∆f ≥ 0 for all small dx and dy, and (0, 0) is a local minimum.
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3. Find the (minimum) distance between the parabolas r1(t) =
〈

0, 2t,−t2
〉

, −∞ < t < ∞ and

r2(u) =
〈

−u, 3, u2
〉

, −∞ < u < ∞.

Let f(t, u) be the squared distance between the points r1(t) and r2(u). It is given by

f(t, u) = (0 + u)2 + (2t − 3)2 + (−t2 − u2)2 = u2 + (2t − 3)2 + (t2 + u2)2

To find the t and u that minimize f , set ∇f(t, u) = 0 to find the critical points:

0 = 4(2t − 3) + 4t(t2 + u2) = 8t − 12 + 4t3 + 4tu2

0 = 2u + 4u(t2 + u2) = 2u(1 + 2t2 + 2u2)

Since (1 + 2t2 + 2u2) ≥ 1 > 0, the second equation implies u = 0. Substituting into the first, we
have

0 = 8t − 12 + 4t3

By inspection, this has a solution t = 1, so the right-hand side must be divisible by (t− 1). Using
long division, we get the factorization:

0 = 8t − 12 + 4t3 = 4(t − 1)(t2 + t + 3)

and since t2+t+3 has no real roots, the only solution is t = 1, giving the critical point (t, u) = (1, 0).

We could use a Hessian test (the Hessian is H(1, 0) = [ 20 0
0 6 ]) to verify that this critical point

is a local minimum, but common sense tells us that there must be a minimum distance between
the curves, and it must occur at either a singular point (there are none), a boundary point (there
are none), or a critical point (there is one), so the critical point must give the minimum distance.

At the critical point (1, 0), the squared distance is f(1, 0) = 2, so the minimum distance
between the curves is

√
2.
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4. For what values of the constant k does the function f(x, y) = kx3 +x2 +2y2−4x−4y have: (a) no
critical points; (b) exactly one critical point; (c) exactly two critical points? For parts (b) and (c),
give the critical points (in terms of k).

For a fixed k, setting ∇f(x, y) = 0 gives the system:

0 = 3kx2 + 2x − 4

0 = 4y − 4

The second equation doesn’t depend on k and always has solution y = 1. For the first equation,
we should first deal with the special case where k = 0 and the equation is linear: 0 = 2x−4 which
has solution x = 2, giving the single critical point (x, y) = (2, 1).

For k 6= 0, the second equation is quadratic with discriminant b2 − 4ac = 22 − 4(3k)(−4) =
4 + 48k. If k < −1/12, then the discriminant is negative, the equation has no real solutions, and
f has no critical points. If k = −1/12, then the discriminant is zero, and the equation has the
single solution:

x =
−2

2(3k)
= 4

giving the single critical point (4, 1). If k > −1/12, then the discriminant is positive, and the
equation has two solutions

x =
−2 ±

√
4 + 48k

6k

giving the two critical points

(x, y) =

(−1 +
√

1 + 12k

3k
, 1

)

(x, y) =

(−1 −
√

1 + 12k

3k
, 1

)

To sum up, the answers are

(a) For k < −1/12, there are no critical points;

(b) For k = 0, there is the single critical point (2, 1), and for k = −1/12, there is the single
critical point (4, 1);

(c) For k > −1/12 but 6= 0, there are two critical points

(x, y) =

(−1 +
√

1 + 12k

3k
, 1

)

(x, y) =

(−1 −
√

1 + 12k

3k
, 1

)
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5. Suppose the outside air temperature is given by

T (x, y, z) = −40 +

(

60 + 90z +
5

20 + x2 + xy + y2 − 2x + 4y

)

e−z

for z ≥ 0 (where z = 0 represents ground level). (a) Find any critical points. (b) Can a point at
ground level have a global minimum or maximum temperature value? Why or why not? (c) Find
the points of global minimum and maximum temperature value, or explain why such points do
not exist.

(a) Setting ∇T (x, y, z) = 0 gives the system:

0 =
−5(2x + y − 2)e−z

(20 + x2 + xy + y2 − 2x + 4y)2

0 =
−5(x + 2y + 4)e−z

(20 + x2 + xy + y2 − 2x + 4y)2

0 =

(

30 − 90z − 5

20 + x2 + xy + y2 − 2x + 4y

)

e−z

The first two equations imply 2x + y − 2 = 0 and x + 2y + 4 = 0. Solving the former for y gives
y = 2 − 2x, and substituting into the latter gives x = 8/3 and so y = 2 − 2(8/3) = −10/3. Thus,
the third equation gives

z =
1

90

(

30 − 5

20 + x2 + xy + y2 − 2x + 4y

)

=
21

64

Therefore, the single critical point is (8/3,−10/3, 21/64).

(b) Let us begin by considering the denominator

g(x, y) = 20 + x2 + xy + y2 − 2x + 4y

Setting ∇g(x, y) = 0 and solving gives a single critical point (x, y) = (8/3,−10/3). Since

∆g = g(8/3 + dx,−10/3 + dy) − g(8/3,−10/3)

= dx2 + dx dy + dy2 = (dx + dy/2)2 + 3dy2/4 ≥ 0

(or by the second derivative test) we conclude that (8/3,−10/3) is a point of local minimum value.
Since there are no singular or boundary points, g(8/3,−10/3) = 32/3 is the global minimum value
of the denominator g.

Now, at ground level, the temperature is given by:

T (x, y, 0) = 20 +
5

g(x, y)

As g(x, y) can be made arbitrarily large (just pick x and y of large magnitude), there is no minimum
ground-level temperature. The maximum ground-level temperature is attained where g(x, y) is
at a minimum, at the critical point (8/3,−10/3). This is the only possible ground-level point
where we might have a global extreme value, so let us fix (x, y) = (8/3,−10/3) and let z ≥ 0
vary, observing the temperature T along a vertical line from ground level upwards as a function
of z alone:

T (z) = −40 + (60 + 90z + 15/32)e−z (1)

Note that T (0) = −40+(60+15/32) = 655/32 ≈ 20.47 at ground level. Setting 0 = T ′(z) = (30−
90z − 15/32)e−z gives the critical point z0 = 21/64 (with T ′′(z0) = (−120 + 90z0 + 15/32)e−z0 ≈
−64.8 indicating it is a point of local maximum temperature along the vertical line). In particular,
T (21/64) ≈ 24.82, so the maximum ground-level temperature T (0) ≈ 20.47 is clearly not the
global maximum temperature.
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(c) Since g(x, y) is positive, we have T (x, y, z) = −40 + (60 + 90z + 5/g(x, y))e−z > −40 everywhere.
However, by taking z large, we can bring T (x, y, z) arbitrarily close to −40. Therefore, T (x, y, z)
has no global minimum.

Also, we have established that none of the ground-level (boundary) points are global maxima.
Since there are no singular points (as the denominator g is never zero), if we can show that the
critical point (8/3,−10/3, 21/64) is a local maximum, then it will be the global maximum. This
can be done via a Hessian test (the eigenvalues are −64.8, −0.0950, and −0.0317), but we could
also just observe that T (x, y, z) = −40 + (60 + 90z + 5/g(x, y))e−z is always maximized, for any
fixed z, by the values (x, y) = (8/3,−10/3) that minimize g(x, y), so we need only consider the
temperatures given by formula (1) along the vertical line (x, y) = (8/3,−10/3) from the ground
upwards. And, we already showed that the temperature attained its maximum value along this
line at z = 21/64.

Therefore, (8/3,−10/3, 21/64) is the point of global maximum temperature T ≈ 24.82 and
there is no point of global minimum temperature.
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6. [MATLAB] Consider the function f(x, y, z) = sin(xez) cos y.

1. Find algebraic expressions for the gradient ∇f(x, y, z) and the Hessian H(x, y, z).

2. Define the point (a, b, c) = (π/e, π/2, 1), and show it is a critical point.

3. Using MATLAB, find the eigenvalues (and corresponding eigenvectors) of H(a, b, c), and verify
(a, b, c) is a saddle point.

4. Find a vector (u, v, w) of length 0.1 parallel to one of the eigenvectors of H(a, b, c) such that
f(a + u, b + v, c + w) < f(a, b, c). [Check the inequality using MATLAB.]

5. Find a vector (u′, v′, w′) of length 0.1 parallel to one of the eigenvectors of H(a, b, c) such
that f(a + u′, b + v′, c + w′) > f(a, b, c). [Check the inequality using MATLAB.]

(a) For f(x, y, z) = sin(xez) cos(y), we have

f1 = ez cos(xez) cos(y); f11 = −e2z sin(xez) cos(y),
f12 = −ez cos(xez) sin(y),
f13 = ez cos(xez) cos(y) − xe2z sin(xez) cos(y),

f2 = − sin(xez) sin(y); f21 = −ez cos(xez) sin(y),
f22 = − sin(xez) cos(y),
f23 = −xez cos(xez) sin(y),

f3 = xez cos(xez) cos(y); f31 = ez cos(xez) cos y − xe2z sin(xez) cos(y),
f32 = −xez cos(xez) sin(y),
f33 = xez cos(xez) cos(y) − x2e2z sin(xez) cos(y).

These are the components that go into

grad f(x, y, z) =





f1

f2

f3



 , H(x, y, z) =





f11 f12 f13

f21 f22 f23

f31 f32 f33



 .

Notice that matrix H is symmetric.

(b) Let a = (a, b, c) = (π/e, π/2, 1). At this point, xez = aec = π, so

grad f(x, y, z) =





e cos(π) cos(π/2)
− sin(π) sin(π/2)
π cos(π) cos(π/2)



 =





0
0
0





so a is indeed a critical point. Likewise,

H(a) =





f11 f12 f13

f21 f22 f23

f31 f32 f33



 =





0 e 0
e 0 π
0 π 0



 .

(c) The MATLAB command

H = [0,exp(1),0; exp(1),0,pi; 0, pi, 0]

defines the Hessian of interest, and then the command [V,D] = eig(H) gives

V =





0.4627 −0.7562 −0.4627
0.7071 0 0.7071
0.5347 0.6543 −0.5347



 , D =





4.1544 0 0
0 0.0000 0
0 0 −4.1544



 .

Here the eigenvalues of H appear as diagonal entries of D: since both positive and negative
eigenvalues appear, a is indeed a saddle point.
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(d) The negative eigenvalue in column 3 of matrix D above indicates that the unit vector in column 3
of matrix V above is a second-order descent direction for f at a. A vector of length 0.1 in this
direction is

(u, v, w) = (−0.04627, 0.07071, −0.05347).

The exact value of f(a, b, c) is 0, but rounding errors in MATLAB lead to

À a=pi/exp(1); b=pi/2; c=1;

À x=a;y=b;z=c;f=sin(x*exp(z))*cos(y)

f =

7.4983e-033

À u=-0.04627; v=0.07071; w=-0.05347;

À x=a+u;y=b+v;z=c+w;f=sin(x*exp(z))*cos(y)

f =

-0.0197

Thus, indeed, f(a + u, b + v, c + w) < f(a, b, c) = 0.

(e) The positive eigenvalue in column 1 of matrix D above indicates that the unit vector in column 1
of matrix V above is a second-order ascent direction for f at a. A vector of length 0.1 in this
direction is (u′, v′, w′) = (0.04627, 0.07071, 0.05347). Switching to MATLAB (where primes are not
allowed in variable names),

À a=pi/exp(1); b=pi/2; c=1;

À u=0.04627; v=0.07071; w=0.05347;

À x=a+u; y=b+v; z=c+w; f=sin(x*exp(z))*cos(y)

f =

0.0212

Thus, indeed, f(a + u′, b + v′, c + w′) > f(a, b, c) = 0.
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7. [MATLAB] For each of the following functions (i) find algebraic expressions for the gradient ∇f and
the Hessian H; (ii) write a MATLAB script that implements Newton’s method for finding critical
points; (iii) run your script with each of the given starting points and include in your answer the
results of the first 10 iterations; and (iv) in those cases where the method appears to be converging,
give a probable classification of the critical point.

(a) e−(x−1)2−y2 − e−(x+1)2−y2

starting at (−1.5, 0.1), (1.5, 0.1), and (1.5, 0.2)

(b) (y2 + z2 − 3)2 + (x2 + z2 − 2)2 + (x2 − z)2 starting at (1, 1.5, 1), (0.5, 0.5, 0.5),
and (0.1,−0.1, 0.1)

(a) For f(x, y) = e−(x−1)2−y2 − e−(x+1)2−y2

=
[

e−(x−1)2 − e−(x+1)2
]

e−y2

, we have

f1 =
[

−2(x − 1)e−(x−1)2 + 2(x + 1)e−(x+1)2
]

e−y2

,

f11 =
[

(

−2 + 4(x − 1)2
)

e−(x−1)2 +
(

2 − 4(x + 1)2
)

e−(x+1)2
]

e−y2

,

f12 =
[

−2(x − 1)e−(x−1)2 + 2(x + 1)e−(x+1)2
]

(

−2ye−y2

)

,

f2 =
[

e−(x−1)2 − e−(x+1)2
]

(

−2ye−y2

)

,

f21 =
[

−2(x − 1)e−(x−1)2 + 2(x + 1)e−(x+1)2
]

(

−2ye−y2

)

,

f22 =
[

e−(x−1)2 − e−(x+1)2
]

(

−2[1 − 2y2]e−y2

)

.

Ten steps of Newton’s Method from three starting points gave the results below.

À newton7a([-1.5; 0.1])

k x(k) y(k)

0 -1.500e+000 1.000e-001

1 -5.282e-001 -1.002e-001

2 -1.213e+000 1.066e-001

3 -1.008e+000 -1.130e-002

4 -1.033e+000 1.862e-005

5 -1.033e+000 -5.902e-013

6 -1.033e+000 0.000e+000

7 -1.033e+000 0.000e+000

8 -1.033e+000 0.000e+000

9 -1.033e+000 0.000e+000

10 -1.033e+000 0.000e+000

Report on point #10:

Objective gradient: 1.4e-017 0.0e+000

Hessian eigenvalues: 2.2e+000 2.0e+000

At (−1.033, 0.000), grad f ≈ 0 and both Hessian eigenvalues are positive, so this point is probably
a local minimizer.

À newton7a([1.5; 0.1])

k x(k) y(k)

0 1.500e+000 1.000e-001

1 5.282e-001 -1.002e-001

2 1.213e+000 1.066e-001

3 1.008e+000 -1.130e-002

4 1.033e+000 1.862e-005
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5 1.033e+000 -5.902e-013

6 1.033e+000 0.000e+000

7 1.033e+000 0.000e+000

8 1.033e+000 0.000e+000

9 1.033e+000 0.000e+000

10 1.033e+000 0.000e+000

Report on point #10:

Objective gradient: 1.4e-017 0.0e+000

Hessian eigenvalues: -2.2e+000 -2.0e+000

At (1.033, 0.000), grad f ≈ 0 and both Hessian eigenvalues are negative, so this point is probably
a local maximizer.

À newton7a([1.5; 0.2])

k x(k) y(k)

0 1.500e+000 2.000e-001

1 3.956e-001 -2.551e-001

2 2.208e+000 1.231e+000

3 2.452e+000 1.480e+000

4 2.644e+000 1.675e+000

5 2.808e+000 1.842e+000

6 2.954e+000 1.991e+000

7 3.089e+000 2.128e+000

8 3.213e+000 2.255e+000

9 3.330e+000 2.374e+000

10 3.440e+000 2.486e+000

Report on point #10:

Objective gradient: -2.6e-005 -2.7e-005

Hessian eigenvalues: -1.1e-005 2.5e-004

It does not look like Newton’s Method is converging in this case.

(b) For f(x, y, z) = (y2 + z2 − 3)2 + (x2 + z2 − 2)2 + (x2 − z)2, we have

f1 = 4x(x2 + z2 − 2) + 4x(x2 − z) = 8x3 + 4xz2 − 4xz − 8x,

f11 = 24x2 + 4z2 − 4z − 8,

f12 = 0,

f13 = 8xz − 4x,

f2 = 4y(y2 + z2 − 3) = 4y3 + 4yz2 − 12y,

f21 = 0,

f22 = 12y2 + 4z2 − 12,

f23 = 8yz,

f3 = 4z(y2 + z2 − 3) + 4z(x2 + z2 − 2) − 2(x2 − z) = 4x2z + 4y2z + 8z3 − 18z − 2x2,

f31 = 8xz − 4x,

f32 = 8yz,

f33 = 4x2 + 4y2 + 24z2 − 18.

Ten steps of Newton’s Method from three starting points gave the results below.

À newton7b([1; 1.5; 1])

k x(k) y(k) z(k)

0 1.000e+000 1.500e+000 1.000e+000

1 1.001e+000 1.424e+000 9.949e-001

2 1.000e+000 1.414e+000 9.999e-001
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3 1.000e+000 1.414e+000 1.000e+000

4 1.000e+000 1.414e+000 1.000e+000

5 1.000e+000 1.414e+000 1.000e+000

6 1.000e+000 1.414e+000 1.000e+000

7 1.000e+000 1.414e+000 1.000e+000

8 1.000e+000 1.414e+000 1.000e+000

9 1.000e+000 1.414e+000 1.000e+000

10 1.000e+000 1.414e+000 1.000e+000

Report on point #10:

Objective gradient: 0.0e+000 0.0e+000 0.0e+000

Hessian eigenvalues: 1.6e+001 5.0e+000 2.9e+001

At (1.000, 1.414, 1.000), grad f ≈ 0 and the Hessian eigenvalues are all positive, so this point is
probably a local minimizer.

À newton7b([0.5; 0.5; 0.5])

k x(k) y(k) z(k)

0 5.000e-001 5.000e-001 5.000e-001

1 -6.667e-001 -3.553e-001 -4.211e-001

2 -1.195e+000 6.921e-002 -1.554e-001

3 -1.015e+000 -3.209e-004 -1.420e-001

4 -9.661e-001 3.255e-007 -1.314e-001

5 -9.623e-001 -1.644e-011 -1.308e-001

6 -9.623e-001 5.463e-018 -1.308e-001

7 -9.623e-001 -5.873e-029 -1.308e-001

8 -9.623e-001 0.000e+000 -1.308e-001

9 -9.623e-001 0.000e+000 -1.308e-001

10 -9.623e-001 0.000e+000 -1.308e-001

Report on point #10:

Objective gradient: 0.0e+000 0.0e+000 2.2e-016

Hessian eigenvalues: -1.2e+001 1.6e+001 -1.5e+001

At (−0.962, 0.000,−0.131), grad f ≈ 0 and the Hessian has both positive and negative eigenvalues,
so this is probably a saddle point.

À newton7b([0.1; -0.1; 0.1])

k x(k) y(k) z(k)

0 1.000e-001 -1.000e-001 1.000e-001

1 1.999e-003 1.356e-003 -7.210e-004

2 -7.384e-007 -2.133e-009 4.465e-007

3 -1.648e-013 2.837e-022 6.058e-014

4 -4.998e-027 0.000e+000 3.004e-027

5 -7.175e-043 0.000e+000 -3.587e-043

6 -7.965e-059 0.000e+000 7.965e-059

7 -8.843e-075 0.000e+000 -1.769e-074

8 -9.818e-091 0.000e+000 3.927e-090

9 -1.090e-106 0.000e+000 -8.720e-106

10 -1.210e-122 0.000e+000 1.936e-121

Report on point #10:

Objective gradient: 9.7e-122 0.0e+000 -3.5e-120

Hessian eigenvalues: -1.2e+001 -8.0e+000 -1.8e+001

At (0, 0, 0), grad f ≈ 0 and the Hessian eigenvalues are all negative, so this point is probably a
local maximizer.
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8. Recall that a function f(x, y) is harmonic if it satisfies f11(x, y) + f22(x, y) = 0 for all x and y in
its domain. Suppose f is a harmonic function with domain all of R

2 and with f11(x, y) 6= 0 for all
x and y. Prove that f has no local minima or maxima.

[All Theorems mentioned below are from Section 13.1.]

Let f be a function satisfying the hypotheses stated in the question. By Theorem 1, any
local minimum or maximum must be a critical point of f , a singular point of f , or a boundary
point of the domain of f . Now, because f is harmonic, its second-order derivatives exist at all
points in its domain, so its first-order derivatives (and so its gradient) exist for all points in the
domain. Therefore, there are no singular points. Also, because f ’s domain is all of R

2, there are
no boundary points. Therefore, any local minimum or maximum must be a critical point. We will
now show that all critical points are saddle points which will allow us to conclude that f has no
local minima or maxima.

Let (a, b) be a critical point of f . Applying Theorem 3, the second derivative test, note that
the Hessian at the critical point (a, b) is:

H =

[

f11(a, b) f12(a, b)
f12(a, b) f22(a, b)

]

so we have det(H) = f11(a, b)f22(a, b) − f12(a, b)2. However, f11(a, b) 6= 0 by assumption, and be-
cause f is harmonic, we have f22(a, b) = −f11(a, b). Therefore, det(H) = −f11(a, b)2−f12(a, b)2 ≤
−f11(a, b)2 < 0. Therefore, H is indefinite, and (a, b) is a saddle point.
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