M263(2004) Solutions-Assignment 2

(c) 2004, UBC Mathematics Department

1. (a) Differentiating $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k}$ gives

$$
\mathbf{v}(t)=\frac{d \mathbf{r}}{d t}=\mathbf{i}+2 t \mathbf{j}+\mathbf{k}, \quad \mathbf{a}(t)=\frac{d \mathbf{v}}{d t}=2 \mathbf{j} .
$$

The desired instantaneous values are $\mathbf{v}(1)=\mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\mathbf{a}(1)=2 \mathbf{j}$.
(b) A normal vector for the desired plane is

$$
\mathbf{n} \stackrel{\text { def }}{=} \mathbf{v}(1) \times \mathbf{a}(1)=\left|\begin{array}{llc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 1 \\
0 & 2 & 0
\end{array}\right|=\langle-2,0,2\rangle
$$

The plane must pass through $\mathbf{r}(1)=(1,1,1)$, so its equation is

$$
0=\mathbf{n} \bullet(x-1, y-1, z-1)=-2(x-1)+2(z-1)
$$

This simplifies to $x=z$.
(c) A vector perpendicular to both \mathbf{n} and \mathbf{v} is

$$
\mathbf{n} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 0 & 2 \\
1 & 2 & 1
\end{array}\right|=\langle-4,4,-4\rangle
$$

So two suitable unit vectors are

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{\sqrt{6}}\langle 1,2,1\rangle, \quad \mathbf{w}=\frac{\mathbf{n} \times \mathbf{v}}{|\mathbf{n} \times \mathbf{v}|}=\frac{1}{\sqrt{3}}\langle-1,1,-1\rangle .
$$

The signs of \mathbf{u} and/or \mathbf{w} can be reversed without spoiling the required properties.
2. Given $\mathbf{r}(t)=\left(\cos (t), \sin (t), 2 \cos ^{2}(t)\right)$, differentiation gives

$$
\begin{aligned}
& \mathbf{v}(t)=\dot{\mathbf{r}}(t)=(-\sin (t), \cos (t),-4 \cos (t) \sin (t)), \\
& \mathbf{a}(t)=\dot{\mathbf{v}}(t)=\left(-\cos (t),-\sin (t), 4 \sin ^{2}(t)-4 \cos ^{2}(t)\right) .
\end{aligned}
$$

These vectors are perpendicular when

$$
\begin{aligned}
0 & =\mathbf{v}(t) \bullet \mathbf{a}(t)=\sin (t) \cos (t)-\sin (t) \cos (t)+16 \sin (t) \cos (t)\left[\cos ^{2}(t)-\sin ^{2}(t)\right] \\
& =16 \sin (t) \cos (t)(\cos (t)-\sin (t))(\cos (t)+\sin (t))
\end{aligned}
$$

This happens when $\sin (t)=0$, or $\cos (t)=0$, or $\sin (t)= \pm \cos (t)$. Among the t-values where $0 \leq t<2 \pi$, after which the particle retraces its path, there are 8 solutions:

$$
t=0, \frac{\pi}{4}, \frac{2 \pi}{4}, \ldots, \frac{7 \pi}{4}
$$

The corresponding points on the path are

$$
(\pm 1,0,2),(0, \pm 1,0),\left(\frac{\alpha}{\sqrt{2}}, \frac{\beta}{\sqrt{2}}, 1\right), \quad \text { where } \quad \alpha= \pm 1, \beta= \pm 1
$$

Three of these points lie in the first octant, and are shown in the first sketch below. The second sketch shows all eight points.

File "hw02", version of 29 September 2004, page 1.

3. (a) Given that $\mathbf{r}(t) \perp \mathbf{v}(t)$ for all t, we deduce that $2 \mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t)=0$ for all t. By a calculation done in class, this implies that

$$
0=2 \mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t)=\frac{d}{d t}(\mathbf{r}(t) \bullet \mathbf{r}(t))=\frac{d}{d t}|\mathbf{r}(t)|^{2} .
$$

Since the function $|\mathbf{r}(t)|^{2}$ has a zero derivative everywhere, it must be constant. Clearly this constant is nonnegative, so call it R^{2}. Then we have $|\mathbf{r}(t)|=R$ for all t, i.e., the particle is moving on the sphere $x^{2}+y^{2}+z^{2}=R^{2}$.
(b) Using $R=|\mathbf{r}(0)|=\sqrt{2}$ gives the equation $x^{2}+y^{2}+z^{2}=2$.
4. A vector normal to this plane is $\mathbf{N}=(3,-2,-1)$. The pebble's acceleration, a, obeys both

$$
\text { (1) } \mathbf{a} \perp \mathbf{N} \quad \text { and } \quad \text { (2) } \quad-g \mathbf{k}=\mathbf{a}+t \mathbf{N} \text { for some } t \in \mathbb{R} \text {. }
$$

By dotting both sides of (2) with \mathbf{N} and using (1), we find

$$
-g \mathbf{k} \bullet \mathbf{N}=0+t \mathbf{N} \bullet \mathbf{N}, \quad \text { i.e. }, \quad t=-g\left[\frac{0+0+-1}{9+4+1}\right]=\frac{g}{14} .
$$

Hence, using (2) again, we find

$$
\begin{equation*}
\mathbf{a}=-g \mathbf{k}-\frac{g}{14} \mathbf{N}=\frac{g}{14}(-3,2,-13) . \tag{3}
\end{equation*}
$$

[Alternatively, the component of the gravitational force $-m g \mathbf{k}$ acting perpendicular to the plane is $\mathbf{F}_{\perp}=\left(\frac{-m g \mathbf{k} \bullet \mathbf{N}}{\mathbf{N} \bullet \mathbf{N}}\right) \mathbf{N}=\left(\frac{m g}{14}\right) \mathbf{N}$. This component does no work on the pebble: all the work is done by the remaining component, $\mathbf{F}_{\|}$, obtained from $-m g \mathbf{k}=\mathbf{F}_{\perp}+\mathbf{F}_{\|}$just as in (3).]
Since \mathbf{a} is constant, $\dot{\mathbf{v}}=\mathbf{a}$ implies $\mathbf{v}=\mathbf{a} t+\mathbf{v}_{0}$, and $\mathbf{v}_{0}=\mathbf{0}$ is given. Next, $\dot{\mathbf{r}}=\mathbf{v}=\mathbf{a} t$ gives $\mathbf{r}=\frac{1}{2} \mathbf{a} t^{2}+\mathbf{r}_{0}$, and $\mathbf{r}_{0}=\mathbf{0}$ is given. Thus we have the general formula and particular value

$$
\mathbf{r}(t)=\frac{t^{2}}{2} \mathbf{a}=\frac{g t^{2}}{28}(-3,2,-13) ; \quad \mathbf{r}(2)=\frac{g}{7}(-3,2,-13) .
$$

5. Differentiating $\quad \mathbf{r}(t)=3(\sin t-t \cos t) \mathbf{i}+3(\cos t+t \sin t) \mathbf{j}+2 t^{2} \mathbf{k} \quad$ gives

$$
\mathbf{v}(t)=3 t \sin t \mathbf{i}+3 t \cos t \mathbf{j}+4 t \mathbf{k}, \quad v(t)=\sqrt{9 t^{2} \sin ^{2} t+9 t^{2} \cos ^{2} t+16 t^{2}}=5 t
$$

File "hw02", version of 29 September 2004, page 2.
(a) The initial point $(0,3,0)$ corresponds to $t=0$; the final point $\left(-6 \pi, 3,8 \pi^{2}\right)$ corresponds to $t=2 \pi$. So the arc length between these points is

$$
s=\int d s=\int v d t=5 \int_{t=0}^{2 \pi} t d t=10 \pi^{2} .
$$

(b) Using the velocity and speed calculated above gives

$$
\widehat{\mathbf{T}}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\mathbf{v}}{v}=\frac{3 t \sin t \mathbf{i}+3 t \cos t \mathbf{j}+4 t \mathbf{k}}{5 t}=\frac{1}{5}(3 \sin t, 3 \cos t, 4)
$$

(c) The arc length up to time $t \geq 0$ (assuming $s=0$ when $t=0$) is

$$
s(t)=\int_{\theta=0}^{t} v(\theta) d \theta=5 \int_{0}^{t} \theta d \theta=\frac{5}{2} t^{2} .
$$

This gives $t=(2 s / 5)^{1 / 2}$, and substitution gives the arc-length parametrization

$$
\mathbf{r}(s)=3\left(\sin \sqrt{\frac{2 s}{5}}-\sqrt{\frac{2 s}{5}} \cos \sqrt{\frac{2 s}{5}}\right) \mathbf{i}+3\left(\cos \sqrt{\frac{2 s}{5}}+\sqrt{\frac{2 s}{5}} \sin \sqrt{\frac{2 s}{5}}\right) \mathbf{j}+\frac{4 s}{5} \mathbf{k} .
$$

6. (a) This is a hyperbolic paraboloid. In the plane $y=0$, we have $z=x^{2}$ (an upward-opening parabola), and in the plane $x=0$, we have $z=-3 y^{2}$ (a downward-opening parabola).

(b) This is an elliptical cylinder. In the plane $y=0$, the cross-section is $x^{2} / 4+z^{2}=1$, an ellipse whose major axis occupies the interval $-2 \leq x \leq 2$, and whose minor axis occupies $-1 \leq z \leq 1$.

(c) This is a bilateral cone with vertex at the origin. Vertical planes of the form $x=$ const. meet the cone in ellipses parallel to the $y z$-plane: these ellipses have major axis parallel to the y-axis and minor axis parallel to the z-axis.

7. The graph of f is a rotationally-symmetric paraboloid that opens downward from the vertex at $(0,0,4)$. The graph of g is a parabolic cylinder parallel to the y-axis. Sketches appear below.

8. Use u to parametrize the curve:

$$
x=u, \quad y=u^{2}, \quad z=u^{3}, \quad u \in \mathbb{R} .
$$

Note that $u=2$ at the point of interest, and that the time-dependence of $\mathbf{r}=(x, y, z)$ comes indirectly through u. Thus, by the chain rule and the product rule,

$$
\begin{array}{lll}
\dot{x}=\dot{u}, & \dot{y}=2 u \dot{u}, & \dot{z}=3 u^{2} \dot{u} \\
\ddot{x}=\ddot{u}, & \ddot{y}=2 \dot{u}^{2}+2 u \ddot{u}, & \ddot{z}=6 u \dot{u}^{2}+3 u^{2} \ddot{u}
\end{array} \quad \Longrightarrow \quad \mathbf{v}=(\dot{x}, \dot{y}, \dot{z})=\left(1,2 u, 3 u^{2}\right) \dot{u} .
$$

The given phrase, "constant vertical speed $\dot{z}=3$," implies that

$$
3=\dot{z}=3 u^{2} \dot{u}, \quad \text { so } \quad 0=\ddot{z}=6 u \dot{u}^{2}+3 u^{2} \ddot{u}
$$

At the instant of interest, $u=2$, so these equations become

$$
3=12 \dot{u}, \quad 0=12 \dot{u}^{2}+12 \ddot{u} .
$$

File "hw02", version of 29 September 2004, page 4.

The first gives $\dot{u}=1 / 4$, and using this in the second gives $\ddot{u}=-1 / 16$ (instantaneous values at $(2,4,8)$). So the instantaneous velocity and acceleration at the point of interest are

$$
\begin{aligned}
& \mathbf{v}=\left(1,2 u, 3 u^{2}\right) \dot{u}=(1 / 4,1,3), \\
& \mathbf{a}=(0,2,12)\left(\frac{1}{16}\right)+(1,4,12)\left(-\frac{1}{16}\right)=\frac{1}{16}(-1,-2,0) .
\end{aligned}
$$

9. A parametric description of the duck's path (with parameter u) is

$$
\begin{equation*}
x=3 u, \quad y=3 u^{2}, \quad z=2 u^{3}, \quad u \in \mathbb{R} . \tag{1}
\end{equation*}
$$

The point of interest, $P(3,3,2)$, corresponds to the parameter value $u=1$. The duck's position depends on time indirectly through some functional relation $u=u(t)$ we don't know yet. But the chain rule and product rule give

$$
\begin{array}{lll}
\dot{x}=3 \dot{u}, & \dot{y}=6 u \dot{u}, & \dot{z}=6 u^{2} \dot{u}, \tag{2}\\
\ddot{x}=3 \ddot{u} & \ddot{y}=6 \dot{u}^{2}+6 u \ddot{u}, & \ddot{z}=12 u \dot{u}^{2}+6 u^{2} \ddot{u} .
\end{array}
$$

Since the duck's speed is constant at 18 , the following identity holds for all t :

$$
\begin{equation*}
18^{2}=\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}=\left[(3)^{2}+(6 u)^{2}+\left(6 u^{2}\right)^{2}\right] \dot{u}^{2} . \tag{3}
\end{equation*}
$$

In particular, at the instant when $u=1$,

$$
\begin{equation*}
18^{2}=[9+36+36] \dot{u}^{2}=9^{2} \dot{u}^{2}, \quad \text { i.e., } \quad \dot{u}^{2}=4 \text { at } P . \tag{4}
\end{equation*}
$$

Since the duck's x-coordinate is increasing, we must have $\dot{u}=2$ (not $\dot{u}=-2$) at P. Identity (3) holds for all t, so we can differentiate it again:

$$
0=\left[0+72 u \dot{u}+144 u^{3} \dot{u}\right] \dot{u}^{2}+\left[(3)^{2}+(6 u)^{2}+\left(6 u^{2}\right)^{2}\right](2 \dot{u} \ddot{u}) .
$$

At the instant when $u=1$, we know $\dot{u}=2$, so at the point P we have

$$
\begin{equation*}
0=[36+72](4)+[81](4 \ddot{u}), \quad \text { i.e., } \quad \ddot{u}=-\frac{432}{81}=-\frac{16}{3} . \tag{5}
\end{equation*}
$$

Thus, at P, the duck's velocity and acceleration are

$$
\begin{aligned}
& \mathbf{v}=\langle\dot{x}, \dot{y}, \dot{z}\rangle=\left\langle 3,6 u, 6 u^{2}\right\rangle \dot{u}=\langle 6,12,12\rangle \\
& \mathbf{a}=\langle\ddot{x}, \ddot{y}, \ddot{z}\rangle=\langle 0,6,12 u\rangle \dot{u}^{2}+\left\langle 3,6 u, 6 u^{2}\right\rangle \ddot{u}=\langle-16,-8,16\rangle .
\end{aligned}
$$

10. (a) The sphere S has centre $\left(x_{0}, y_{0}, z_{0}\right)=(0,1,-2)$. The distance of this point from the plane $P(k)$ is given by the point-to-plane distance formula:

$$
d(k) \stackrel{\text { def }}{=} \frac{\left|2 x_{0}+6 y_{0}+3 z_{0}-k\right|}{|(2,6,3)|}=\frac{|-6+6-k|}{\sqrt{4+36+9}}=\frac{|k|}{7} .
$$

Plane $P(k)$ meets S tangentially when $d(k)$ equals the radius of S, which is 3 . Enforce this:

$$
d(k)=3 \Longleftrightarrow \frac{|k|}{7}=3 \Longleftrightarrow|k|=21 \Longleftrightarrow k= \pm 21
$$

Conclusion: $c=21$.
(b) Let's use the name $C(k)$ for the circle where S meets $P(k)$, and write $r(k)$ for the radius of $C(k)$. Let $R=3$ denote the radius of the sphere S. By Pythagoras, $R^{2}=d(k)^{2}+r(k)^{2}$. Thus

$$
\begin{equation*}
r(k)=\sqrt{R^{2}-d(k)^{2}}=\sqrt{9-k^{2} / 49}=\frac{1}{7} \sqrt{21^{2}-k^{2}} \tag{|k|<21}
\end{equation*}
$$

To find the centre of $C(k)$, we move a distance $d(k)$ in direction parallel to $\mathbf{n}=(2,6,3)$ from the centre of S. For $k>0$ we move forward along \mathbf{n}, and for $k<0$ we move backward. The centre is

$$
\mathbf{r}_{0}=(0,1,-2)+\left(\frac{k}{7}\right) \frac{(2,6,3)}{|(2,6,3)|}=\frac{1}{49}(2 k, 6 k+49,3 k-98) .
$$

(c) The plane of circle $C(k)$ has normal $\mathbf{n}=\langle 2,6,3\rangle$, so it contains the vector $\langle-3,0,2\rangle$. Another vector it contains, perpendicular to the first, is

$$
\mathbf{n} \times\langle-3,0,2\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 6 & 3 \\
-3 & 0 & 2
\end{array}\right|=\langle 12,-13,18\rangle .
$$

Hence the desired parametrization can be obtained using

$$
\begin{array}{ll}
\mathbf{r}_{0}=\frac{1}{49}(2 k, 6 k+49,3 k-98) & \text { (the centre of circle } C(k)), \\
\mathbf{u}=\frac{r(k)}{\sqrt{13}}\langle-3,0,2\rangle & \text { (a vector of length } r(k) \text { in the given direction) }, \\
\mathbf{w}=\frac{r(k)}{\sqrt{2077}}\langle 12,-13,18\rangle & \text { (a vector of length } r(k) \text { in the perpendicular dis }
\end{array}
$$

(A different approach may produce a result for \mathbf{w} with the opposite sign. This is also valid.)

