
M263(2004) Solutions—Assignment 2
(c) 2004, UBC Mathematics Department

1. (a) Differentiating r(t) = ti + t2j + tk gives

v(t) =
dr

dt
= i + 2tj + k, a(t) =

dv

dt
= 2j.

The desired instantaneous values are v(1) = i + 2j + k and a(1) = 2j.

(b) A normal vector for the desired plane is

n
def
= v(1)× a(1) =

∣∣∣∣∣∣

i j k
1 2 1
0 2 0

∣∣∣∣∣∣
= 〈 − 2, 0, 2〉 .

The plane must pass through r(1) = (1, 1, 1), so its equation is

0 = n • (x − 1, y − 1, z − 1) = −2(x − 1) + 2(z − 1).

This simplifies to x = z.

(c) A vector perpendicular to both n and v is

n × v =

∣∣∣∣∣∣

i j k
−2 0 2
1 2 1

∣∣∣∣∣∣
= 〈 − 4, 4, −4〉 .

So two suitable unit vectors are

u =
v

|v| =
1√
6
〈1, 2, 1〉 , w =

n × v

|n × v| =
1√
3
〈 − 1, 1, −1〉 .

The signs of u and/or w can be reversed without spoiling the required properties.

2. Given r(t) =
(
cos(t), sin(t), 2 cos2(t)

)
, differentiation gives

v(t) = ṙ(t) = ( − sin(t), cos(t), −4 cos(t) sin(t)) ,

a(t) = v̇(t) =
(
− cos(t), − sin(t), 4 sin2(t)− 4 cos2(t)

)
.

These vectors are perpendicular when

0 = v(t) • a(t) = sin(t) cos(t)− sin(t) cos(t) + 16 sin(t) cos(t)
[
cos2(t)− sin2(t)

]

= 16 sin(t) cos(t) ( cos(t)− sin(t)) ( cos(t) + sin(t)) .

This happens when sin(t) = 0, or cos(t) = 0, or sin(t) = ± cos(t). Among the t-values where 0 ≤ t < 2π,
after which the particle retraces its path, there are 8 solutions:

t = 0,
π

4
,

2π

4
, . . . ,

7π

4
.

The corresponding points on the path are

(±1, 0, 2), (0,±1, 0),

(
α√
2
,

β√
2
, 1

)
, where α = ±1, β = ±1.

Three of these points lie in the first octant, and are shown in the first sketch below. The second sketch
shows all eight points.
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3. (a) Given that r(t) ⊥ v(t) for all t, we deduce that 2r(t) • r′(t) = 0 for all t. By a calculation done in
class, this implies that

0 = 2r(t) • r′(t) =
d

dt
(r(t) • r(t)) =

d

dt
|r(t)|2.

Since the function |r(t)|2 has a zero derivative everywhere, it must be constant. Clearly this constant
is nonnegative, so call it R2. Then we have |r(t)| = R for all t, i.e., the particle is moving on the
sphere x2 + y2 + z2 = R2.

(b) Using R = |r(0)| =
√

2 gives the equation x2 + y2 + z2 = 2.

4. A vector normal to this plane is N = (3,−2,−1). The pebble’s acceleration, a, obeys both

(1) a ⊥ N and (2) − gk = a + tN for some t ∈ R.

By dotting both sides of (2) with N and using (1), we find

−gk • N = 0 + tN •N, i.e., t = −g

[
0 + 0 + −1

9 + 4 + 1

]
=

g

14
.

Hence, using (2) again, we find

a = −gk − g

14
N =

g

14
( − 3, 2,−13) . (3)

[Alternatively, the component of the gravitational force −mgk acting perpendicular to the plane is

F⊥ =

( − mgk •N

N • N

)
N =

(
mg

14

)
N. This component does no work on the pebble: all the work is done

by the remaining component, F‖, obtained from −mgk = F⊥ + F‖ just as in (3).]

Since a is constant, v̇ = a implies v = at+v0, and v0 = 0 is given. Next, ṙ = v = at gives r = 1

2
at2 +r0,

and r0 = 0 is given. Thus we have the general formula and particular value

r(t) =
t2

2
a =

gt2

28
( − 3, 2,−13) ; r(2) =

g

7
( − 3, 2,−13) .

5. Differentiating r(t) = 3(sin t − t cos t)i + 3(cos t + t sin t)j + 2t2k gives

v(t) = 3t sin t i + 3t cos t j + 4tk, v(t) =
√

9t2 sin2 t + 9t2 cos2 t + 16t2 = 5t.
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(a) The initial point (0, 3, 0) corresponds to t = 0; the final point (−6π, 3, 8π2) corresponds to t = 2π.
So the arc length between these points is

s =

∫
ds =

∫
v dt = 5

∫
2π

t=0

t dt = 10π2.

(b) Using the velocity and speed calculated above gives

T̂ =
v

|v| =
v

v
=

3t sin t i + 3t cos t j + 4tk

5t
=

1

5
(3 sin t, 3 cos t, 4) .

(c) The arc length up to time t ≥ 0 (assuming s = 0 when t = 0) is

s(t) =

∫ t

θ=0

v(θ) dθ = 5

∫ t

0

θ dθ =
5

2
t2.

This gives t = (2s/5)1/2, and substitution gives the arc-length parametrization

r(s) = 3

(
sin

√
2s

5
−
√

2s

5
cos

√
2s

5

)
i + 3

(
cos

√
2s

5
+

√
2s

5
sin

√
2s

5

)
j +

4s

5
k.

6. (a) This is a hyperbolic paraboloid. In the plane y = 0, we have z = x2 (an upward-opening parabola),
and in the plane x = 0, we have z = −3y2 (a downward-opening parabola).

y

z

x

(b) This is an elliptical cylinder. In the plane y = 0, the cross-section is x2/4+ z2 = 1, an ellipse whose
major axis occupies the interval −2 ≤ x ≤ 2, and whose minor axis occupies −1 ≤ z ≤ 1.

y

z

x
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(c) This is a bilateral cone with vertex at the origin. Vertical planes of the form x = const. meet the
cone in ellipses parallel to the yz-plane: these ellipses have major axis parallel to the y-axis and
minor axis parallel to the z-axis.

y

z

x

7. The graph of f is a rotationally-symmetric paraboloid that opens downward from the vertex at (0, 0, 4).
The graph of g is a parabolic cylinder parallel to the y-axis. Sketches appear below.

y

z

x

y

z

x

8. Use u to parametrize the curve:

x = u, y = u2, z = u3, u ∈ R.

Note that u = 2 at the point of interest, and that the time-dependence of r = (x, y, z) comes indirectly
through u. Thus, by the chain rule and the product rule,

ẋ = u̇, ẏ = 2uu̇, ż = 3u2u̇ =⇒ v = (ẋ, ẏ, ż) =
(
1, 2u, 3u2

)
u̇

ẍ = ü, ÿ = 2u̇2 + 2uü, z̈ = 6uu̇2 + 3u2ü =⇒ a = (ẍ, ÿ, z̈) = (0, 2, 6u) u̇2 +
(
1, 2u, 3u2

)
ü.

The given phrase, “constant vertical speed ż = 3,” implies that

3 = ż = 3u2u̇, so 0 = z̈ = 6uu̇2 + 3u2ü.

At the instant of interest, u = 2, so these equations become

3 = 12u̇, 0 = 12u̇2 + 12ü.
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The first gives u̇ = 1/4, and using this in the second gives ü = −1/16 (instantaneous values at (2, 4, 8)).
So the instantaneous velocity and acceleration at the point of interest are

v = (1, 2u, 3u2)u̇ = (1/4, 1, 3),

a = (0, 2, 12)

(
1

16

)
+ (1, 4, 12)

(
− 1

16

)
=

1

16
(− 1, −2, 0) .

9. A parametric description of the duck’s path (with parameter u) is

x = 3u, y = 3u2, z = 2u3, u ∈ R. (1)

The point of interest, P (3, 3, 2), corresponds to the parameter value u = 1. The duck’s position depends
on time indirectly through some functional relation u = u(t) we don’t know yet. But the chain rule and
product rule give

ẋ = 3u̇, ẏ = 6uu̇, ż = 6u2u̇,

ẍ = 3ü ÿ = 6u̇2 + 6uü, z̈ = 12uu̇2 + 6u2ü.
(2)

Since the duck’s speed is constant at 18, the following identity holds for all t:

182 = ẋ2 + ẏ2 + ż2 =
[
(3)2 + (6u)2 + (6u2)2

]
u̇2. (3)

In particular, at the instant when u = 1,

182 = [9 + 36 + 36] u̇2 = 92u̇2, i.e., u̇2 = 4 at P. (4)

Since the duck’s x-coordinate is increasing, we must have u̇ = 2 (not u̇ = −2) at P . Identity (3) holds
for all t, so we can differentiate it again:

0 =
[
0 + 72uu̇ + 144u3u̇

]
u̇2 +

[
(3)2 + (6u)2 + (6u2)2

]
(2u̇ü) .

At the instant when u = 1, we know u̇ = 2, so at the point P we have

0 = [36 + 72] (4) + [81] (4ü) , i.e., ü = −432

81
= −16

3
. (5)

Thus, at P , the duck’s velocity and acceleration are

v = 〈ẋ, ẏ, ż〉 =
〈
3, 6u, 6u2

〉
u̇ = 〈6, 12, 12〉 ,

a = 〈ẍ, ÿ, z̈〉 = 〈0, 6, 12u〉 u̇2 +
〈
3, 6u, 6u2

〉
ü = 〈 − 16, −8, 16〉 .

10. (a) The sphere S has centre (x0, y0, z0) = (0, 1,−2). The distance of this point from the plane P (k) is
given by the point-to-plane distance formula:

d(k)
def
=

|2x0 + 6y0 + 3z0 − k|
|(2, 6, 3) | =

|−6 + 6− k|√
4 + 36 + 9

=
|k|
7

.

Plane P (k) meets S tangentially when d(k) equals the radius of S, which is 3. Enforce this:

d(k) = 3 ⇐⇒ |k|
7

= 3 ⇐⇒ |k| = 21 ⇐⇒ k = ±21.

Conclusion: c = 21.

(b) Let’s use the name C(k) for the circle where S meets P (k), and write r(k) for the radius of C(k).
Let R = 3 denote the radius of the sphere S. By Pythagoras, R2 = d(k)2 + r(k)2. Thus

r(k) =
√

R2 − d(k)2 =
√

9− k2/49 =
1

7

√
212 − k2 (|k| < 21).
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To find the centre of C(k), we move a distance d(k) in direction parallel to n = (2, 6, 3) from the
centre of S. For k > 0 we move forward along n, and for k < 0 we move backward. The centre is

r0 = (0, 1,−2)+

(
k

7

)
(2, 6, 3)

|(2, 6, 3)| =
1

49
(2k, 6k + 49, 3k− 98) .

(c) The plane of circle C(k) has normal n = 〈2, 6, 3〉, so it contains the vector 〈 − 3, 0, 2〉. Another
vector it contains, perpendicular to the first, is

n × 〈 − 3, 0, 2〉 =

∣∣∣∣∣∣

i j k
2 6 3
−3 0 2

∣∣∣∣∣∣
= 〈12,−13, 18〉 .

Hence the desired parametrization can be obtained using

r0 =
1

49
(2k, 6k + 49, 3k− 98) (the centre of circle C(k)),

u =
r(k)√

13
〈 − 3, 0, 2〉 (a vector of length r(k) in the given direction),

w =
r(k)√
2077

〈12,−13, 18〉 (a vector of length r(k) in the perpendicular direction).

(A different approach may produce a result for w with the opposite sign. This is also valid.)
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