Math 263 Midterm 1 Solutions

1a) The points $(1,1,0)$ and $(0,0,2)$ are on the line $2 x+z=2,2 y+z=2$ and hence on \mathcal{P}. So the vector from $(2,0,0)$ to $(1,1,0)$, which is $\langle-1,1,0\rangle$, is parallel to \mathcal{P}. So is the vector from $(2,0,0)$ to $(0,0,2)$, which is $\langle-2,0,2\rangle$. So the vector $\langle-1,1,0\rangle \times\langle-2,0,2\rangle=\langle 2,2,2\rangle$ is a normal vector for \mathcal{P}. So is the vector $\frac{1}{2}\langle 2,2,2\rangle=\langle 1,1,1\rangle$. The equation of \mathcal{P} is $\langle 1,1,1\rangle \cdot(\langle x, y, z\rangle-\langle 2,0,0\rangle)=0$ or $x+y+z=2$
b) The direction vector for \mathcal{L}, namely $\langle 1,0,-1\rangle$, is perpendicular to $\langle 1,1,1\rangle$ which in turn is perpendicular to \mathcal{P}. So $\langle 1,0,-1\rangle$, and hence \mathcal{L}, is parallel to \mathcal{P}.
c) The point $(-2,-1,-1)$ is on \mathcal{L}. The point $(0,1,1)$ is on \mathcal{P}. The vector joining them, namely $\langle 2,2,2\rangle$ is normal to \mathcal{P}. So the distance between \mathcal{L} and \mathcal{P} is $|\langle 2,2,2\rangle|=2 \sqrt{3}$.

2a) Completing the square, we may rewrite the equation of \mathcal{S} as $(x-1)^{2}+y^{2}=z^{2}-1$. The part of the surface in the plane $z=z_{0}$ is $(x-1)^{2}+y^{2}=z_{0}^{2}-1$. If $\left|z_{0}\right|<1$ then $z_{0}^{2}-1<0$ and no x, y satisfies the equation. Otherwise, $(x-1)^{2}+y^{2}=z^{2}-1, z=z_{0}$ is a circle which is parallel to the $x y$-plane, is centred on $x=1, y=0$ and has radius $\sqrt{z_{0}^{2}-1}$. This radius is zero when $z_{0}= \pm 1$ and increases as z_{0} out from -1 or 1. For large z_{0}, the radius is approximately $\left|z_{0}\right|$. So our surface consists of a bunch of horizontal circles stacked vertically, starting with circles of radius zero at $z=-1,1$ and growing in size as we move out. The sketch is

b) A normal vector to \mathcal{S} at $(0,1, \sqrt{3})$ is

$$
\left.\vec{\nabla}\left(x^{2}-2 x+y^{2}-z^{2}+2\right)\right|_{(0,1, \sqrt{3})}=\left.\langle 2 x-2,2 y,-2 z\rangle\right|_{(0,1, \sqrt{3})}=\langle-2,2,-2 \sqrt{3}\rangle
$$

An equation of the tangent plane is

$$
\langle 1,-1, \sqrt{3}\rangle \cdot(\langle x, y, z\rangle-\langle 0,1, \sqrt{3}\rangle)=0 \text { or } x-y+\sqrt{3} z=2
$$

c) The curve of intersection is $(x-1)^{2}+y^{2}=z^{2}-1, z=\sqrt{5}$ or $(x-1)^{2}+y^{2}=4, z=\sqrt{5}$ which is a horizontal circle of radius 2 centred on $(1,0, \sqrt{5})$. One parametrization is

$$
\langle x, y, z\rangle=\langle 1,0, \sqrt{5}\rangle+2 \cos t \hat{\imath}+2 \sin t \hat{\boldsymbol{\jmath}} \quad 0 \leq t \leq 2 \pi
$$

3a) If $x+y \neq 2$,

$$
\frac{\partial f}{\partial y}(x, y)=\frac{\partial}{\partial y} \frac{x^{2}-2 x+y^{2}+y-1}{x+y-2}=\frac{2 y+1}{x+y-2}-\frac{x^{2}-2 x+y^{2}+y-1}{(x+y-2)^{2}}
$$

In particular,

$$
\frac{\partial f}{\partial y}(1,2)=\frac{2 \times 2+1}{1+2-2}-\frac{1-2 \times 1+2^{2}+2-1}{(1+2-2)^{2}}=1
$$

b) By definition

$$
\begin{aligned}
\frac{\partial f}{\partial y}(1,1) & =\lim _{\Delta y \rightarrow 0} \frac{f(1,1+\Delta y)-f(1,1)}{\Delta y}=\lim _{\Delta y \rightarrow 0} \frac{1}{\Delta y}\left[\frac{1-2+(1+\Delta y)^{2}+(1+\Delta y)-1}{1+(1+\Delta y)-2}-3\right] \\
& =\lim _{\Delta y \rightarrow 0} \frac{1}{\Delta y}\left[\frac{(\Delta y)^{2}+3 \Delta y}{\Delta y}-3\right]=\lim _{\Delta y \rightarrow 0} 1=1
\end{aligned}
$$

Warnings:

a) Knowing the value of a function at one point tells you nothing about the value of any derivative of that function at that point. In particular, knowing that $f(1,1)=3$ does not necessarily mean
that f is a constant, so that $f_{y}(1,1)=0$. For example, the function $f(x, y)=3+7(y-1)$ obeys $f(1,1)=3$, but $f_{y}(1,1)=7$.
b) $f_{y}(1,1)$ is the limit of $f_{y}(x, y)$ as (x, y) approaches $(1,1)$ only if $f_{y}(x, y)$ is continuous at $(1,1)$. In this question, $f_{y}(x, y)$ is not continuous at $(1,1)$ and cannot be computed as the limit of $\frac{2 y+1}{x+y-2}-$ $\frac{x^{2}-2 x+y^{2}+y-1}{(x+y-2)^{2}}$ as (x, y) approaches $(1,1)$.
4a) The temperature gradient at P is

$$
\vec{\nabla} T(2,-1,3)=\left.\langle y z \cos (x y z+6), x z \cos (x y z+6), x y \cos (x y z+6)\rangle\right|_{(2,-1,3)}=<-3,6,-2>
$$

The direction of travel is $\langle 1-2,1+1,1-3\rangle=\langle-1,2,-2\rangle$. A unit vector in this direction is $\frac{1}{3}\langle-1,2,-2\rangle$. So the directional derivative, i.e. the rate of change per unit distance, is $<-3,6,-2>\cdot \frac{1}{3}\langle-1,2,-2\rangle=\frac{19}{3} / \mathrm{m}$ b)

$$
\begin{aligned}
T(2.1,-0.95,3.25) & \approx T(2,-1,3)+0.1 T_{x}(2,-1,3)+0.05 T_{y}(2,-1,3)+0.25 T_{z}(2,-1,3) \\
& \approx 20+0.1(-3)+0.05 \times 6+0.25(-2) \\
& =19.5^{\circ}
\end{aligned}
$$

c) The bee should move in the direction of the temperature gradient, which is $\langle<-3,6,-2\rangle$.

