Mathematics 263, Section 103 (Instructor Loewen) Midterm 1 September 29, 2004

There are four questions worth a total of 100 marks. No calculators or cheat sheets are allowed.

- $\begin{bmatrix} \frac{25}{100} \end{bmatrix}$ 1) Let \mathcal{P} be the plane containing the point (2,0,0) and the line 2x + z = 2, 2y + z = 2. Let \mathcal{L} be the line $\vec{\mathbf{r}}(t) = \langle -2, -1, -1 \rangle + t \langle 1, 0, -1 \rangle$.
 - $\left[\frac{10}{100}\right]$ a) Find the equation of \mathcal{P} .
 - $\left[\frac{5}{100}\right]$ b) Show that \mathcal{L} is parallel to \mathcal{P} .
 - $\left[\frac{10}{100}\right]$ c) Find the distance from \mathcal{L} to \mathcal{P} .

Math 263 Nan

 $\left[\frac{25}{100}\right]$ 2) Consider the surface S whose equation is $x^2 - 2x + y^2 - z^2 = -2$.

- $\left[\frac{10}{100}\right]$ a) Sketch \mathcal{S} , clearly explaining how you arrived at the sketch.
- $\left[\frac{7}{100}\right]$ b) Find the tangent plane to S at the point $(0, 1, \sqrt{3})$.
- $\left[\frac{8}{100}\right]$ c) Parametrize the curve of intersection of S with the plane $z = \sqrt{5}$.

 ${\rm Math}~263$ Name:_____

 $\left[\frac{25}{100}\right]$ 3) Define the function

$$f(x,y) = \begin{cases} \frac{x^2 - 2x + y^2 + y - 1}{x + y - 2} & \text{if } x + y \neq 2\\ 3 & \text{if } x + y = 2 \end{cases}$$

- $\begin{bmatrix} \frac{12}{100} \end{bmatrix}$ a) Evaluate, if possible, $\frac{\partial f}{\partial y}(1,2)$. $\begin{bmatrix} \frac{13}{100} \end{bmatrix}$ b) Evaluate, if possible, $\frac{\partial f}{\partial y}(1,1)$.

- $\left[\frac{25}{100}\right]$ 4) Suppose that the temperature in degrees Centigrade at the point (x, y, z), with coordinates measured in meters, is given by the function $T(x, y, z) = 20 + \sin(xyz + 6)$. A bee located at the point P = (2, -1, 3) is flying towards the point Q = (1, 1, 1).
 - $\left[\frac{10}{100}\right]$ a) Find the directional derivative of T(x, y, z) at P in the direction of the bee's motion.
 - $\begin{bmatrix} \frac{10}{100} \end{bmatrix}$ b) Estimate the temperature at the point R = (2.1, -0.95, 3.25).
 - $\left[\frac{5}{100}\right]$ c) In what direction should the bee move in order to warm up as quickly as possible?

Math 263	Name:	Student #:	Page 5 o	of 5
------------	-------	------------	----------	------

Extra writing room