Math 263 Assignment 9

Due December 1

1) Let $\vec{F}=(x-y z) \hat{\imath}+(y+x z) \hat{\jmath}+(z+2 x y) \hat{k}$ and let
S_{1} be the portion of the cylinder $x^{2}+y^{2}=2$ that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$
S_{2} be the portion of $x^{2}+y^{2}+z^{2}=4$ that lies outside the cylinder $x^{2}+y^{2}=2$
V be the volume bounded by S_{1} and S_{2}
Compute
a) $\iint_{S_{1}} \vec{F} \cdot \hat{n} d S \quad$ with \hat{n} pointing inward
b) $\iiint_{V} \vec{\nabla} \cdot F d V$
c) $\iint_{S_{2}} \vec{F} \cdot \hat{n} d S \quad$ with \hat{n} pointing outward

Use the divergence theorem to answer at least one of parts (a), (b) and (c).
2) Evaluate the integral $\iint_{S} \vec{F} \cdot \hat{n} d S$, where $\vec{F}=(x, y, 1)$ and S is the surface $z=1-x^{2}-y^{2}$, for $x^{2}+y^{2} \leq 1$, by two methods.
a) First, by direct computation of the surface integral.
b) Second, by using the divergence theorem.

3a) By applying the divergence theorem to $\vec{F}=\phi \vec{a}$, where \vec{a} is an arbitrary constant vector, show that

$$
\iiint_{V} \vec{\nabla} \phi d V=\iint_{\partial V} \phi \hat{\mathbf{n}} d S
$$

b) Show that the centroid $(\bar{x}, \bar{y}, \bar{z})$ of a solid V is given by

$$
(\bar{x}, \bar{y}, \bar{z})=\frac{1}{2 \operatorname{vol}(V)} \iint_{\partial V}\left(x^{2}+y^{2}+z^{2}\right) \hat{\mathbf{n}} d S
$$

4) Find the flux of $\vec{F}=(y+x z) \hat{\boldsymbol{\imath}}+(y+y z) \hat{\boldsymbol{\jmath}}-\left(2 x+z^{2}\right) \hat{\mathbf{k}}$ upward through the first octant part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
5) Let $\vec{E}(\vec{r})$ be the electric field due to a charge configuration that has density $\rho(\vec{r})$. Gauss' law states that, if V is any solid in \mathbb{R}^{3} with surface ∂V, then the electric flux

$$
\iint_{\partial V} \vec{E} \cdot \hat{\mathbf{n}} d S=4 \pi Q \quad \text { where } \quad Q=\iiint_{V} \rho d V
$$

is the total charge in V. Here, as usual, $\hat{\mathbf{n}}$ is the outward pointing unit normal to ∂V. Show that

$$
\vec{\nabla} \cdot \vec{E}(\vec{r})=4 \pi \rho(\vec{r})
$$

for all \vec{r} in \mathbb{R}^{3}. This is one of Maxwell's equations. Assume that $\vec{\nabla} \cdot \vec{E}(\vec{r})$ and $\rho(\vec{r})$ are well-defined and continuous everywhere.
6) Evaluate, both by direct integration and by Stokes' Theorem, $\oint_{C}(z d x+x d y+y d z)$ where C is the circle $x+y+z=0, x^{2}+y^{2}+z^{2}=1$. Orient C so that its projection on the $x y$-plane is counterclockwise.
7) Evaluate $\oint_{C}\left(x \sin y^{2}-y^{2}\right) d x+\left(x^{2} y \cos y^{2}+3 x\right) d y$ where C is the counterclockwise boundary of the trapezoid with vertices $(0,-2),(1,-1),(1,1)$ and $(0,2)$.
8) Evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=y e^{x} \hat{\boldsymbol{\imath}}+\left(x+e^{x}\right) \hat{\boldsymbol{\jmath}}+z^{2} \hat{\mathbf{k}}$ and C is the curve

$$
\vec{r}(t)=(1+\cos t) \hat{\imath}+(1+\sin t) \hat{\boldsymbol{\jmath}}+(1-\sin t-\cos t) \hat{\mathbf{k}}
$$

9) Let C be the intersection of $x+2 y-z=7$ and $x^{2}-2 x+4 y^{2}=15$. The curve C is oriented counterclockwise when viewed from high on the z-axis. Let

$$
\vec{F}=\left(x^{3} e^{-x}+y z\right) \hat{\boldsymbol{\imath}}+\left(\frac{\sin y}{y}+\sin z-x^{2}\right) \hat{\boldsymbol{\jmath}}+(x y+y \cos z) \hat{\mathbf{k}}
$$

Evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$.
10) Consider $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{\mathbf{n}} d S$ where S is the portion of the sphere $x^{2}+y^{2}+z^{2}=1$ that obeys $x+y+z \geq 1$, $\hat{\mathbf{n}}$ is the upward pointing normal to the sphere and $\vec{F}=(y-z) \hat{\mathbf{\imath}}+(z-x) \hat{\boldsymbol{\jmath}}+(x-y) \hat{\mathbf{k}}$. Find another surface S^{\prime} with the property that $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{\mathbf{n}} d S=\iint_{S^{\prime}}(\vec{\nabla} \times \vec{F}) \cdot \hat{\mathbf{n}} d S$ and evaluate $\iint_{S^{\prime}}(\vec{\nabla} \times \vec{F}) \cdot \hat{\mathbf{n}} d S$.

