Math 263 Assignment \#8

1. For each of the following vector fields $\overrightarrow{\mathbf{F}}$, find $\operatorname{div} \overrightarrow{\mathbf{F}}$ and $\operatorname{curl} \overrightarrow{\mathbf{F}}$.
(a) $\overrightarrow{\mathbf{F}}(x, y, z)=z \overrightarrow{\mathbf{j}}-y \overrightarrow{\mathbf{k}}$
(b) $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x^{2}, y, z\right\rangle$
(c) $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x+y,-y^{2},-2 z\right\rangle$
2. For each of the following oriented surfaces \mathcal{S}, (i) sketch \mathcal{S}, (ii) parametrize \mathcal{S}, (iii) find the vector and scalar area elements $d \overrightarrow{\mathbf{S}}$ and $d S$ for your parametrization, (iv) calculate the indicated surface or flux integral.
(a) \mathcal{S} given by $z=x^{2} y^{2},-1 \leq x \leq 1,-1 \leq y \leq 1$ oriented positive side upward. Calculate $\iint_{\mathcal{S}} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{S}}$ for $\overrightarrow{\mathbf{F}}=x \overrightarrow{\mathbf{\imath}}+\overrightarrow{\mathbf{\jmath}}+z \overrightarrow{\mathbf{k}}$.
(b) \mathcal{S} surface of ellipsoid $4 x^{2}+4 y^{2}+z^{2}-6 z+5=0$ oriented inward. Calculate surface area of \mathcal{S}.
(c) \mathcal{S} surface of intersection of sphere $x^{2}+y^{2}+z^{2} \leq 4$ and plane $z=1$ oriented away from the origin. Calculate flux away from the origin of the electrical field $\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})=\frac{\overrightarrow{\mathbf{r}}}{|\overrightarrow{\mathbf{r}}|^{3}}$.
3. Let \mathcal{S} be the portion of the surface $x^{2}+1=y^{2}+z^{2}$ bounded by the planes $x=-1, x=2$, and lying above the $x y$-plane. Calculate the surface integral $\iint_{\mathcal{S}} z \sqrt{\frac{1+2 x^{2}}{y^{2}+z^{2}}} d S$.
[Hint: You may find it helpful to restate the problem, exchanging the variables x, y, and z throughout to make the surface symmetric around the z-axis.]
4. Use geometric reasoning to find $I=\iint_{\mathcal{S}} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{S}}$ "by inspection" in the three situations below. Briefly explain your answers. (In all parts, a and b are positive constants.)
(a) $\overrightarrow{\mathbf{F}}(x, y, z)=x \overrightarrow{\mathbf{1}}+y \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}}$, and \mathcal{S} is the surface consisting of three squares with one corner at the origin and positive sides facing the first octant. The squares have sides $b \overrightarrow{\mathbf{r}}$ and $b \overrightarrow{\mathbf{j}}, b \overrightarrow{\mathbf{\jmath}}$ and $b \overrightarrow{\mathbf{k}}$, and $b \overrightarrow{\mathbf{1}}$ and $b \overrightarrow{\mathbf{k}}$, respectively.
(b) $\overrightarrow{\mathbf{F}}(x, y, z)=(x \overrightarrow{\mathbf{1}}+y \overrightarrow{\mathbf{\jmath}}) \ln \left(x^{2}+y^{2}\right)$, and \mathcal{S} is the surface of the cylinder (including the top and bottom) where $x^{2}+y^{2} \leq a^{2}$ and $0 \leq z \leq b$.
(c) $\overrightarrow{\mathbf{F}}(x, y, z)=(x \overrightarrow{\mathbf{\imath}}+y \overrightarrow{\mathbf{J}}+z \overrightarrow{\mathbf{k}}) e^{-\left(x^{2}+y^{2}+z^{2}\right)}$, and \mathcal{S} is the spherical surface $x^{2}+y^{2}+z^{2}=a^{2}$.
5. Let \mathcal{S} be the boundary surface for the solid given by $0 \leq z \leq \sqrt{4-y^{2}}$ and $0 \leq x \leq \frac{\pi}{2}$.
(a) Find the outward unit normal vector field $\hat{\mathbf{N}}$ on each of the four sides of \mathcal{S}.
(b) Find the total outward flux of $\overrightarrow{\mathbf{F}}=4 \sin (x) \overrightarrow{\mathbf{\imath}}+z^{3} \overrightarrow{\mathbf{\jmath}}+y z^{2} \overrightarrow{\mathbf{k}}$ through \mathcal{S}.

Do the calculations directly-don't use the Divergence Theorem. [Hint: Flux integrals for three of the four sides can be calculated geometrically.]
6. Simplify the following expressions for smooth vector fields $\overrightarrow{\mathbf{F}}$ and $\overrightarrow{\mathbf{G}}$ and smooth scalar fields ϕ and ψ. [Hint: You may find Theorem 3 on pages 954-955 helpful.]
(a) $\nabla \bullet(\nabla \phi \times \nabla \psi)$
(b) $\nabla \bullet(\phi \overrightarrow{\mathbf{F}}+\overrightarrow{\mathbf{G}})-(\nabla \phi) \bullet \overrightarrow{\mathbf{F}}$ for solenoidal $\overrightarrow{\mathbf{F}}$
(c) $\operatorname{div}(\overrightarrow{\mathbf{F}} \times(\overrightarrow{\mathbf{F}}+\overrightarrow{\mathbf{G}}))$ for conservative $\overrightarrow{\mathbf{G}}$
7. A vector field $\overrightarrow{\mathbf{F}}$ is called a curl field if it can be expressed as $\overrightarrow{\mathbf{F}}=\operatorname{curl}(\overrightarrow{\mathbf{G}})$ for some vector field $\overrightarrow{\mathbf{G}}$. In this case, $\overrightarrow{\mathbf{G}}$ is called a vector potential for $\overrightarrow{\mathbf{F}}$.
(a) Explain why the following is true: if $\overrightarrow{\mathbf{G}}$ is a vector potential for a curl field $\overrightarrow{\mathbf{F}}$ and ϕ is a smooth scalar field, then $\overrightarrow{\mathbf{G}}+\nabla \phi$ is also a vector potential for $\overrightarrow{\mathbf{F}}$.
Now, consider the vector field $\overrightarrow{\mathbf{F}}=\left\langle x^{2} e^{2 y}, A z e^{2 y},(x-z)^{2} e^{2 y}\right\rangle$ where A is a constant.
(b) Only one choice for A makes $\overrightarrow{\mathbf{F}}$ a curl field. Find this value of A.
(c) Using the value of A from part (b), find a vector potential for $\overrightarrow{\mathbf{F}}$ having special form $\overrightarrow{\mathbf{G}}=\left\langle G_{1}, 0, G_{3}\right\rangle$.
(d) Repeat part (c), but find vector potentials with special forms $\left\langle 0, G_{2}, G_{3}\right\rangle$ and $\left\langle G_{1}, G_{2}, 0\right\rangle$. [Hint: Use the fact in part (a).]

