Math 263 Assignment #8

Due in class on Wednesday 24 November 2004

1. For each of the following vector fields $\vec{\mathbf{F}}$, find div $\vec{\mathbf{F}}$ and curl $\vec{\mathbf{F}}$.

(a)
$$\vec{\mathbf{F}}(x, y, z) = z\vec{\mathbf{j}} - y\vec{\mathbf{k}}$$
 (b) $\vec{\mathbf{F}}(x, y, z) = \langle x^2, y, z \rangle$ (c) $\vec{\mathbf{F}}(x, y, z) = \langle x + y, -y^2, -2z \rangle$

- 2. For each of the following oriented surfaces S, (i) sketch S, (ii) parametrize S, (iii) find the vector and scalar area elements $d\vec{S}$ and dS for your parametrization, (iv) calculate the indicated surface or flux integral.
 - (a) S given by $z = x^2 y^2$, $-1 \le x \le 1$, $-1 \le y \le 1$ oriented positive side upward. Calculate $\iint_S \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$ for $\vec{\mathbf{F}} = x\vec{\mathbf{i}} + \vec{\mathbf{j}} + z\vec{\mathbf{k}}$.
 - (b) S surface of ellipsoid $4x^2 + 4y^2 + z^2 6z + 5 = 0$ oriented inward. Calculate surface area of S.
 - (c) S surface of intersection of sphere $x^2 + y^2 + z^2 \leq 4$ and plane z = 1 oriented away from the origin. Calculate flux away from the origin of the electrical field $\vec{\mathbf{E}}(\vec{\mathbf{r}}) = \frac{\vec{\mathbf{r}}}{|\vec{\mathbf{r}}|^3}$.
- 3. Let S be the portion of the surface $x^2 + 1 = y^2 + z^2$ bounded by the planes x = -1, x = 2, and lying above the *xy*-plane. Calculate the surface integral $\iint_{S} z \sqrt{\frac{1+2x^2}{y^2+z^2}} \, dS$.

[Hint: You may find it helpful to restate the problem, exchanging the variables x, y, and z throughout to make the surface symmetric around the z-axis.]

- 4. Use geometric reasoning to find $I = \iint_{\mathcal{S}} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$ "by inspection" in the three situations below. Briefly explain your answers. (In all parts, *a* and *b* are positive constants.)
 - (a) $\vec{\mathbf{F}}(x, y, z) = x\vec{\mathbf{i}} + y\vec{\mathbf{j}} + z\vec{\mathbf{k}}$, and \mathcal{S} is the surface consisting of three squares with one corner at the origin and positive sides facing the first octant. The squares have sides $b\vec{\mathbf{i}}$ and $b\vec{\mathbf{j}}$, $b\vec{\mathbf{j}}$ and $b\vec{\mathbf{k}}$, and $b\vec{\mathbf{i}}$ and $b\vec{\mathbf{k}}$, respectively.
 - (b) $\vec{\mathbf{F}}(x, y, z) = (x\vec{\mathbf{i}} + y\vec{\mathbf{j}})\ln(x^2 + y^2)$, and S is the surface of the cylinder (including the top and bottom) where $x^2 + y^2 \le a^2$ and $0 \le z \le b$.
 - (c) $\vec{\mathbf{F}}(x,y,z) = (x\vec{\mathbf{i}} + y\vec{\mathbf{j}} + z\vec{\mathbf{k}})e^{-(x^2+y^2+z^2)}$, and \mathcal{S} is the spherical surface $x^2 + y^2 + z^2 = a^2$.
- 5. Let S be the boundary surface for the solid given by $0 \le z \le \sqrt{4-y^2}$ and $0 \le x \le \frac{\pi}{2}$.
 - (a) Find the outward unit normal vector field $\hat{\mathbf{N}}$ on each of the four sides of \mathcal{S} .
 - (b) Find the total outward flux of $\vec{\mathbf{F}} = 4\sin(x)\vec{\mathbf{i}} + z^3\vec{\mathbf{j}} + yz^2\vec{\mathbf{k}}$ through \mathcal{S} .

Do the calculations directly—don't use the Divergence Theorem. [Hint: Flux integrals for three of the four sides can be calculated geometrically.]

- 6. Simplify the following expressions for smooth vector fields $\vec{\mathbf{F}}$ and $\vec{\mathbf{G}}$ and smooth scalar fields ϕ and ψ . [Hint: You may find Theorem 3 on pages 954–955 helpful.]
 - (a) $\nabla \bullet (\nabla \phi \times \nabla \psi)$ (b) $\nabla \bullet (\phi \vec{\mathbf{F}} + \vec{\mathbf{G}}) - (\nabla \phi) \bullet \vec{\mathbf{F}}$ for solenoidal $\vec{\mathbf{F}}$ (c) div $(\vec{\mathbf{F}} \times (\vec{\mathbf{F}} + \vec{\mathbf{G}}))$ for conservative $\vec{\mathbf{G}}$
- 7. A vector field $\vec{\mathbf{F}}$ is called a *curl field* if it can be expressed as $\vec{\mathbf{F}} = curl(\vec{\mathbf{G}})$ for some vector field $\vec{\mathbf{G}}$. In this case, $\vec{\mathbf{G}}$ is called a *vector potential* for $\vec{\mathbf{F}}$.
 - (a) Explain why the following is true: if $\vec{\mathbf{G}}$ is a vector potential for a curl field $\vec{\mathbf{F}}$ and ϕ is a smooth scalar field, then $\vec{\mathbf{G}} + \nabla \phi$ is also a vector potential for $\vec{\mathbf{F}}$.

Now, consider the vector field $\vec{\mathbf{F}} = \langle x^2 e^{2y}, Az e^{2y}, (x-z)^2 e^{2y} \rangle$ where A is a constant.

- (b) Only one choice for A makes $\vec{\mathbf{F}}$ a curl field. Find this value of A.
- (c) Using the value of A from part (b), find a vector potential for $\vec{\mathbf{F}}$ having special form $\vec{\mathbf{G}} = \langle G_1, 0, G_3 \rangle$.
- (d) Repeat part (c), but find vector potentials with special forms $(0, G_2, G_3)$ and $(G_1, G_2, 0)$. [Hint: Use the fact in part (a).]