## Math 263 HW07; Due 10 November 2004

1. Compute the volumes of the following regions.
(a) The "ice-cream cone" region which is bounded above by the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$.
(b) The region bounded by $z=x^{2}+3 y^{2}$ and $z=4-y^{2}$.
(c) The region inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the cylinder $x^{2}+y^{2}=4$.
2. Let $T$ be the solid bounded by $z=2$ and $z=\frac{1}{2} \sqrt{x^{2}+y^{2}}$ and with $y \geq 0$. Furthermore, assume that $T$ has constant density $\delta(x, y, z)=\alpha>0$.
(a) Compute the center of mass, $(\bar{x}, \bar{y}, \bar{z})$, of $T$. Recall that

$$
\bar{x}=\frac{1}{M} \iiint_{T} x \delta(x, y, z) d V ; \quad \bar{y}=\frac{1}{M} \iiint_{T} y \delta(x, y, z) d V ; \quad \bar{z}=\frac{1}{M} \iiint_{T} z \delta(x, y, z) d V
$$

where $M=$ mass of $T=\iiint_{T} \delta(x, y, z) d V$.
(b) Verify the mass of $T$ using SPHERICAL coordinates.
3. Let $C$ be the helix $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$ for $0 \leq t \leq 2 \pi$ and let $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
(a) Compute the arc length, $s$, of $C$.
(b) Evaluate $\int_{C} f(x, y, z) d s$.
(c) Evaluate $\frac{1}{s} \int_{C} f(x, y, z) d s$, i.e., the average value of $f(x, y, z)$ along $C$.
4. Compute $\int_{C} f(x, y, z) d s$ for the following curves and functions.
(a) $C: \mathbf{r}(t)=\left\langle 30 \cos ^{3} t, 30 \sin ^{3} t\right\rangle$ for $0 \leq t \leq \pi / 2$ and $f(x, y)=1+y / 3$.
(b) $C: \mathbf{r}(t)=\left\langle t^{2} / 2, t^{3} / 3\right\rangle$ for $0 \leq t \leq 1$ and $f(x, y)=x^{2}+y^{2}$.
(c) $C: \mathbf{r}(t)=\left\langle 1,2, t^{2}\right\rangle$ for $0 \leq t \leq 1$ and $f(x, y, z)=e^{\sqrt{z}}$.
5. Determine whether or not the following vector fields are conservative. In the cases where $\mathbf{F}$ is conservative, find a function $\varphi$ such that $\mathbf{F}(x, y, z)=\nabla \varphi(x, y, z)$.
(a) $\mathbf{F}=\left(2 x y+z^{2}\right) \mathbf{i}+\left(x^{2}+2 y z\right) \mathbf{j}+\left(y^{2}+2 x z\right) \mathbf{k}$.
(b) $\mathbf{F}=(\ln (x y)) \mathbf{i}+\left(\frac{x}{y}\right) \mathbf{j}+(y) \mathbf{k}$.
(c) $\mathbf{F}=\left(e^{x} \cos y\right) \mathbf{i}+\left(-e^{x} \sin y\right) \mathbf{j}+(2 z) \mathbf{k}$.
(d) $\mathbf{F}=\left(3 x^{2} y\right) \mathbf{i}+\left(4 x y^{2}\right) \mathbf{j}$.
6. Let $C_{1}$ be the piece of the parabola $y=x^{2}$ from $P=(0,0)$ to $Q=(1,1)$ and let $C_{2}$ be the straight line from $P$ to $Q$.
(a) Compute $\int_{C_{1}} y^{2} d x+(x-y) d y$.
(b) Compute $\int_{C_{2}} y^{2} d x+(x-y) d y$.
(c) Based on your answers to (a) and (b), is the vector field $\mathbf{F}(x, y)=\left\langle y^{2}, x-y\right\rangle$ conservative? Why or why not?
(d) Let $C=C_{1}-C_{2}$ denote the end-to-end concatenation of $C_{1}$ with its given orientation and $C_{2}$ with the reverse orientation. Compute $\int_{C} x y^{2} d x+x^{2} y d y$.

