Math 263 Assignment 6

Due in class on Wednesday 3 November 2004

- **1.** Evaluate these iterated integrals: $I = \int_0^2 \int_0^y y^2 e^{xy} \, dx \, dy, \quad J = \int_0^\pi \int_{-x}^x \cos y \, dy \, dx.$
- **2.** For any reasonable $f: \mathbb{R}^2 \to \mathbb{R}$, let

$$I[f] = \int_{1/\sqrt{2}}^{1} \int_{\sqrt{1-x^2}}^{x} f(x,y) \, dy \, dx + \int_{1}^{\sqrt{2}} \int_{0}^{x} f(x,y) \, dy \, dx + \int_{0}^{\sqrt{2}} \int_{\sqrt{2}}^{\sqrt{4-y^2}} f(x,y) \, dx \, dy.$$

- (a) Find and sketch the set D in the xy-plane such that, for any f, $I[f] = \iint_D f(x, y) \, dA$.
- (b) Evaluate I[f] for the constant function f(x, y) = K.
- (c) Evaluate I[f] for $f(x, y) = \sqrt{x^2 + y^2}$.
- 3. For each iterated integral, sketch the domain of integration and evaluate:

$$I = \int_0^1 dy \int_y^1 e^{-x^2} dx, \qquad J = \int_0^{\pi/2} \int_y^{\pi/2} \frac{\sin x}{x} dx dy, \qquad K = \int_0^1 \int_x^1 \frac{y^p}{x^2 + y^2} dy dx \ (p > 0).$$

- 4. Find the volume of the solid under the surface $z = x^2 \sin(y^4)$ and above the triangle in the xy-plane whose vertices are (0,0), $(0,\pi^{1/4})$, and $(\pi^{1/4},\pi^{1/4})$.
- 5. Let s > 0 be a constant, and consider the set $D = \{(x, y) \in \mathbb{R}^2 : x \ge 0, 0 \le y \le e^{-sx}\}.$

Express the centroid coordinates $(\overline{x}, \overline{y})$ for D in terms of s. Recall that

$$\overline{x} = \frac{1}{\operatorname{Area}(D)} \iint_D x \, dA, \qquad \overline{y} = \frac{1}{\operatorname{Area}(D)} \iint_D y \, dA; \quad \text{in general}, \quad \overline{f} = \frac{1}{\operatorname{Area}(D)} \iint_D f(x, y) \, dA.$$

6. Sketch the plane curves given by these polar equations:

(i) $r = 1 + \sin \theta$, (ii) $r = 1 + 2\cos \theta$, (iii) $r = \cos 3\theta$, (iv) $r^2 = 4\sin 3\theta$.

Work without electronic assistance as much as possible.

[Checking your results with a computer after thinking about the problem is strongly encouraged.]

- 7. Find $\iint_S x \, dA$, where S is the disk segment $x^2 + y^2 \le 2, x \ge 1$.
- 8. The disk $D, x^2 + y^2 \leq 1$, is inscribed in a square whose sides have length 2. For each point (x, y) in D, let the distance to the nearest side of the square be f(x, y). Find \overline{f} , the average value of f on D.
- **9.** Find the volume of the region above the xy-plane, below the paraboloid $z = 1 x^2 y^2$, and in the wedge $-x \le y \le \sqrt{3} x$.
- 10. Evaluate these integrals by changing to spherical coordinates:

(a)
$$\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z\sqrt{x^{2}+y^{2}+z^{2}} \, dz \, dy \, dx.$$

(b)
$$\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}} \left(x^{2}+y^{2}+z^{2}\right) \, dz \, dx \, dy.$$

11. Evaluate the improper integral $Q = \iiint_{\mathbb{R}^3} |\mathbf{x}| e^{-|\mathbf{x}|^2} dV$ by interpreting it as the limit when $R \to \infty$ of a triple integral over a solid sphere of radius R centred at **0**.