Math 263 Assignment 6

Due in class on Wednesday 3 November 2004

1. Evaluate these iterated integrals: $\quad I=\int_{0}^{2} \int_{0}^{y} y^{2} e^{x y} d x d y, \quad J=\int_{0}^{\pi} \int_{-x}^{x} \cos y d y d x$.
2. For any reasonable $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, let

$$
I[f]=\int_{1 / \sqrt{2}}^{1} \int_{\sqrt{1-x^{2}}}^{x} f(x, y) d y d x+\int_{1}^{\sqrt{2}} \int_{0}^{x} f(x, y) d y d x+\int_{0}^{\sqrt{2}} \int_{\sqrt{2}}^{\sqrt{4-y^{2}}} f(x, y) d x d y
$$

(a) Find and sketch the set D in the $x y$-plane such that, for any $f, \quad I[f]=\iint_{D} f(x, y) d A$.
(b) Evaluate $I[f]$ for the constant function $f(x, y)=K$.
(c) Evaluate $I[f]$ for $f(x, y)=\sqrt{x^{2}+y^{2}}$.
3. For each iterated integral, sketch the domain of integration and evaluate:

$$
I=\int_{0}^{1} d y \int_{y}^{1} e^{-x^{2}} d x, \quad J=\int_{0}^{\pi / 2} \int_{y}^{\pi / 2} \frac{\sin x}{x} d x d y, \quad K=\int_{0}^{1} \int_{x}^{1} \frac{y^{p}}{x^{2}+y^{2}} d y d x(p>0)
$$

4. Find the volume of the solid under the surface $z=x^{2} \sin \left(y^{4}\right)$ and above the triangle in the $x y$-plane whose vertices are $(0,0),\left(0, \pi^{1 / 4}\right)$, and $\left(\pi^{1 / 4}, \pi^{1 / 4}\right)$.
5. Let $s>0$ be a constant, and consider the set $D=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0,0 \leq y \leq e^{-s x}\right\}$.

Express the centroid coordinates (\bar{x}, \bar{y}) for D in terms of s. Recall that

$$
\bar{x}=\frac{1}{\operatorname{Area}(D)} \iint_{D} x d A, \quad \bar{y}=\frac{1}{\operatorname{Area}(D)} \iint_{D} y d A ; \quad \text { in general, } \quad \bar{f}=\frac{1}{\operatorname{Area}(D)} \iint_{D} f(x, y) d A .
$$

6. Sketch the plane curves given by these polar equations:
(i) $r=1+\sin \theta$,
(ii) $r=1+2 \cos \theta$,
(iii) $r=\cos 3 \theta$,
(iv) $r^{2}=4 \sin 3 \theta$.

Work without electronic assistance as much as possible.
[Checking your results with a computer after thinking about the problem is strongly encouraged.]
7. Find $\iint_{S} x d A$, where S is the disk segment $x^{2}+y^{2} \leq 2, x \geq 1$.
8. The disk $D, x^{2}+y^{2} \leq 1$, is inscribed in a square whose sides have length 2 . For each point (x, y) in D, let the distance to the nearest side of the square be $f(x, y)$. Find \bar{f}, the average value of f on D.
9. Find the volume of the region above the $x y$-plane, below the paraboloid $z=1-x^{2}-y^{2}$, and in the wedge $-x \leq y \leq \sqrt{3} x$.
10. Evaluate these integrals by changing to spherical coordinates:
(a) $\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x$.
(b) $\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y$.
11. Evaluate the improper integral $\quad Q=\iiint_{\mathbb{R}^{3}}|\mathbf{x}| e^{-|\mathbf{x}|^{2}} d V \quad$ by interpreting it as the limit when $R \rightarrow \infty$ of a triple integral over a solid sphere of radius R centred at $\mathbf{0}$.

