Math 263 Assignment 5 Due October 20

- 1) If t_0 is a local minimum or maximum of the smooth function f(t) of one variable (t runs over all real numbers) then $f'(t_0) = 0$. Derive an analogous necessary condition for \vec{x}_0 to be a local minimum or maximum of the smooth function $g(\vec{x})$ restricted to points on the line $\vec{x} = \vec{a} + t\vec{d}$. The test should involve the gradient of $g(\vec{x})$.
- 2) Find the maximum and minimum values of $f(x, y) = xy x^3y^2$ when (x, y) runs over the square $0 \le x \le 1, 0 \le y \le 1$.
- 3) The temperature at all points in the disc $x^2 + y^2 \le 1$ is $T(x, y) = (x + y)e^{-x^2 y^2}$. Find the maximum and minimum temperatures at points of the disc.
- 4) Find the high and low points of the surface $z = \sqrt{x^2 + y^2}$ with (x, y) varying over the square $|x| \le 1$, $|y| \le 1$. Discuss the values of z_x , z_y there. Do not evaluate any derivatives in answering this question.
- 5) Use the method of Lagrange multipliers to find the maximum and minimum values of the function f(x, y, z) = x + y z on the sphere $x^2 + y^2 + z^2 = 1$.
- 6) Find a, b and c so that the volume $4\pi abc/3$ of an ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ passing through the point (1, 2, 1) is as small as possible.
- 7) Find the ends of the major and minor axes of the ellipse $3x^2 2xy + 3y^2 = 4$.
- 8) Find the triangle of largest area that can be inscribed in the circle $x^2 + y^2 = 1$.
- 9) The temperature gradient, at each point (x, y) of the disk $x^2 + y^2 \le 25$, is a strictly positive multiple of (6 + x, 8 + y). Find the hottest point of the disk.
- 10) For each of the following, evaluate the given double integral **without** using iteration. Instead, interpret the integral as an area or some other physical quantity.
 - a) $\iint_R dx \, dy$ where R is the rectangle $-1 \le x \le 3, -4 \le y \le 1$.
 - b) $\iint_D (x+3)dx dy$, where D is the half disc $0 \le y \le \sqrt{4-x^2}$.
 - c) $\iint_{R} (x+y) dx dy$ where R is the rectangle $0 \le x \le a, \ 0 \le y \le b$.
 - d) $\iint_R \sqrt{a^2 x^2 y^2} \, dx \, dy$ where R is the region $x^2 + y^2 \le a^2$.
 - e) $\iint_R \sqrt{b^2 y^2} \, dx \, dy$ where R is the rectangle $0 \le x \le a, \ 0 \le y \le b$.