Math 263 Assignment 5

Due October 20

1) If t_{0} is a local minimum or maximum of the smooth function $f(t)$ of one variable $(t$ runs over all real numbers) then $f^{\prime}\left(t_{0}\right)=0$. Derive an analogous necessary condition for \vec{x}_{0} to be a local minimum or maximium of the smooth function $g(\vec{x})$ restricted to points on the line $\vec{x}=\vec{a}+t \vec{d}$. The test should involve the gradient of $g(\vec{x})$.
2) Find the maximum and minimum values of $f(x, y)=x y-x^{3} y^{2}$ when (x, y) runs over the square $0 \leq x \leq 1,0 \leq y \leq 1$.
3) The temperature at all points in the disc $x^{2}+y^{2} \leq 1$ is $T(x, y)=(x+y) e^{-x^{2}-y^{2}}$. Find the maximum and minimum temperatures at points of the disc.
4) Find the high and low points of the surface $z=\sqrt{x^{2}+y^{2}}$ with (x, y) varying over the square $|x| \leq 1,|y| \leq 1$. Discuss the values of z_{x}, z_{y} there. Do not evaluate any derivatives in answering this question.
5) Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x, y, z)=x+y-z$ on the sphere $x^{2}+y^{2}+z^{2}=1$.
6) Find a, b and c so that the volume $4 \pi a b c / 3$ of an ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ passing through the point $(1,2,1)$ is as small as possible.
7) Find the ends of the major and minor axes of the ellipse $3 x^{2}-2 x y+3 y^{2}=4$.
8) Find the triangle of largest area that can be inscribed in the circle $x^{2}+y^{2}=1$.
9) The temperature gradient, at each point (x, y) of the disk $x^{2}+y^{2} \leq 25$, is a strictly positive multiple of $(6+x, 8+y)$. Find the hottest point of the disk.
10) For each of the following, evaluate the given double integral without using iteration. Instead, interpret the integral as an area or some other physical quantity.
a) $\iint_{R} d x d y$ where R is the rectangle $-1 \leq x \leq 3,-4 \leq y \leq 1$.
b) $\iint_{D}(x+3) d x d y$, where D is the half disc $0 \leq y \leq \sqrt{4-x^{2}}$.
c) $\iint_{R}(x+y) d x d y$ where R is the rectangle $0 \leq x \leq a, 0 \leq y \leq b$.
d) $\iint_{R} \sqrt{a^{2}-x^{2}-y^{2}} d x d y$ where R is the region $x^{2}+y^{2} \leq a^{2}$.
e) $\iint_{R} \sqrt{b^{2}-y^{2}} d x d y$ where R is the rectangle $0 \leq x \leq a, 0 \leq y \leq b$.
