Math 263 Assignment \#4

Due in class on Wednesday 13 October 2004

1. Find and classify the critical points of each of the following functions:
(a) $f(x, y, z)=x^{2}+y z-x-2 y-z+7$
(c) $f(x, y)=e^{-x^{2}-y^{2}}\left(1-e^{x^{2}}\right)$
(b) $f(x, y)=(x+y)^{3}-(x-y)(x-5 y)$
(d) $f(x, y)=2 \sin x \cos y$
2. Find and classify all critical and singular points of $f(x, y)=7 \sqrt{x^{2}+y^{2}}-2(x-1)^{2}+(x+1)^{2}$.
3. Find the (minimum) distance between the parabolas $\mathbf{r}_{1}(t)=\left\langle 0,2 t,-t^{2}\right\rangle,-\infty<t<\infty$ and $\mathbf{r}_{2}(u)=\left\langle-u, 3, u^{2}\right\rangle,-\infty<u<\infty$.
4. For what values of the constant k does the function $f(x, y)=k x^{3}+x^{2}+2 y^{2}-4 x-4 y$ have:
(a) no critical points; (b) exactly one critical point; (c) exactly two critical points? For parts (b) and (c), give the critical points (in terms of k).
5. Suppose the outside air temperature is given by

$$
T(x, y, z)=-40+\left(60+90 z+\frac{5}{20+x^{2}+x y+y^{2}-2 x+4 y}\right) e^{-z}
$$

for $z \geq 0$ (where $z=0$ represents ground level). (a) Find any critical points. (b) Can a point at ground level have a global minimum or maximum temperature value? Why or why not? (c) Find the points of global minimum and maximum temperature value, or explain why such points do not exist.
6. [MATLAB] Consider the function $f(x, y, z)=\sin \left(x e^{z}\right) \cos y$.
(a) Find algebraic expressions for the gradient $\nabla f(x, y, z)$ and the Hessian $\mathcal{H}(x, y, z)$.
(b) Define the point $(a, b, c)=(\pi / e, \pi / 2,1)$, and show it is a critical point.
(c) Using MATLAB, find the eigenvalues (and corresponding eigenvectors) of $\mathcal{H}(a, b, c)$, and verify (a, b, c) is a saddle point.
(d) Find a vector (u, v, w) of length 0.1 parallel to one of the eigenvectors of $\mathcal{H}(a, b, c)$ such that $f(a+u, b+v, c+w)<f(a, b, c)$. [Check the inequality using MATLAB.]
(e) Find a vector $\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$ of length 0.1 parallel to one of the eigenvectors of $\mathcal{H}(a, b, c)$ such that $f\left(a+u^{\prime}, b+v^{\prime}, c+w^{\prime}\right)>f(a, b, c)$. [Check the inequality using MATLAB.]
7. [MATLAB] For each of the following functions (i) find algebraic expressions for the gradient ∇f and the Hessian \mathcal{H}; (ii) write a MATLAB script that implements Newton's method for finding critical points; (iii) run your script with each of the given starting points and include in your answer the results of the first 10 iterations; and (iv) in those cases where the method appears to be converging, give a probable classification of the critical point.
(a) $e^{-(x-1)^{2}-y^{2}}-e^{-(x+1)^{2}-y^{2}}$ starting at $(-1.5,0.1),(1.5,0.1)$, and $(1.5,0.2)$
(b) $\left(y^{2}+z^{2}-3\right)^{2}+\left(x^{2}+z^{2}-2\right)^{2}+\left(x^{2}-z\right)^{2}$ starting at $(1,1.5,1),(0.5,0.5,0.5)$, and (0.1, -0.1, 0.1)
8. Recall that a function $f(x, y)$ is harmonic if it satisfies $f_{11}(x, y)+f_{22}(x, y)=0$ for all x and y in its domain. Suppose f is a harmonic function with domain all of \mathbb{R}^{2} and with $f_{11}(x, y) \neq 0$ for all x and y. Prove that f has no local minima or maxima.

