Math 263 Assignment \#3

Due in class on Wednesday 6 October 2004

1. A function $z=f(x, y)$ is called harmonic if it satisfies Laplace's equation:

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0
$$

Determine whether or not the following are harmonic.
(a) $z=\sqrt{x^{2}+y^{2}}$.
(b) $z=e^{-x} \sin y$.
(c) $z=3 x^{2} y-y^{3}$.
2. Give an example of a function with the indicated properties or show that no such function exists.
(a) A function $f(x, y)$ with continuous first and second order partial derivatives in the $x y$-plane and which satisfies $\partial f / \partial x=6 x y^{2}$ and $\partial f / \partial y=8 x^{2} y$.
(b) A function $g(x, y)$ satisfying the equations $\partial g / \partial x=\partial g / \partial y=2 x y$.
3. Use the appropriate version of the chain rule to compute the following.
(a) $d w / d t$ at $t=3$, where $w=\ln \left(x^{2}+y^{2}+z^{2}\right), x=\cos t, y=\sin t$, and $z=4 \sqrt{t}$.
(b) $\partial z / \partial u$ and $\partial z / \partial v$, where $z=x y, x=u \cos v$, and $y=u \sin v$.
4. Suppose that a duck is swimming in the circle $x=\cos t, y=\sin t$ and that the water temperature is given by the formula $T=x^{2} e^{y}-x y^{3}$. Find the rate of change in temperature the duck might feel.
5. A boat is sailing northeast at $20 \mathrm{~km} / \mathrm{h}$. Assuming that the temperature drops at a rate of $0.2^{\circ} \mathrm{C} / \mathrm{km}$ in the northerly direction and $0.3^{\circ} \mathrm{C} / \mathrm{km}$ in the easterly direction, what is the rate of change of temperature with respect to time as observed on the boat?
6. Compute the following using implicit differentiation.
(a) $\partial y / \partial z$ if $e^{y z}-x^{2} z \ln y=\pi$.
(b) $d y / d x$ if $F\left(x, y, x^{2}-y^{2}\right)=0$.
(c) $(\partial y / \partial x)_{u}$ if $x y u v=1$ and $x+y+u+v=0$. [Hint: You should consider $y=y(x, u)$ and $v=v(x, u)$.]
7. Given a surface $F(x, y, z)=0$ that defines $x=f(y, z), y=g(x, z)$, and $z=h(x, y)$. Use implicit differentiation to verify that

$$
\left(\frac{\partial y}{\partial x}\right)\left(\frac{\partial z}{\partial y}\right)\left(\frac{\partial x}{\partial z}\right)=-1 .
$$

8. Find second-degree (Taylor) polynomial approximations to the given functions at the points provided.
(a) $f(x, y)=\tan ^{-1}(x+x y)$ at the point $(-1,0)$.
(b) $g(x, y)=x^{3}+2 x y+x y^{2}$ at the point $(1,1)$.
(c) Use part (b) to estimate $(1.1)^{3}+2(1.1)(.9)+(1.1)(.9)^{2}$. [Note that the actual value is 4.202.]
