Math 263 Assignment 2

Due in class on Wednesday 22 September 2004

1. The position of a moving particle at time t is given by $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t \mathbf{k}$. Find
(a) The particle's velocity and acceleration vectors (\mathbf{v} and \mathbf{a}) at $t=1$;
(b) An equation for the plane through $\mathbf{r}(1)$ containing the two vectors in (a); and
(c) A pair of perpendicular unit vectors \mathbf{u}, \mathbf{w} in the plane from (b), with $\mathbf{u} \| \mathbf{v}$.
2. The position of a moving particle at time t is $\mathbf{r}(t)=\left(\cos (t), \sin (t), 2 \cos ^{2}(t)\right)$. Find all points on the particle's path at which its velocity and acceleration vectors are perpendicular. Illustrate with a good sketch.
3. A moving particle's position $\mathbf{r}(t)$ and velocity $\mathbf{v}(t)$ obey $\mathbf{v}(t) \perp \mathbf{r}(t)$ for all t.
(a) Prove that the particle must be moving on the surface of a sphere.
(b) Assuming that $\mathbf{r}(0)=\mathbf{i}+\mathbf{j}$, find the equation of the sphere in (a).
4. A pebble is placed at the origin and released with initial velocity $\mathbf{0}$. It slides without friction along the plane $3 x-2 y-z=0$. Find its position two seconds after release. [Assume a constant gravitational field of $-g \mathbf{k}$, where g is a positive constant. Express your answer in terms of g.]
5. Given $\quad \mathbf{r}(t)=3(\sin t-t \cos t) \mathbf{i}+3(\cos t+t \sin t) \mathbf{j}+2 t^{2} \mathbf{k}, t \geq 0$, find
(a) the length of the arc between $(0,3,0)$ and $\left(-6 \pi, 3,8 \pi^{2}\right)$,
(b) the unit tangent $\widehat{\mathbf{T}}=\mathbf{v} /|\mathbf{v}|$ as a function of t, and
(c) a reparametrization of the same curve in terms of arc length (match $s=0$ with $t=0$).
6. Sketch and give the standard name for each surface below:
(a) $z=x^{2}-3 y^{2}$,
(b) $x^{2}+4 z^{2}=4$,
(c) $x^{2}=y^{2}+2 z^{2}$.
7. Sketch the graphs of the functions $f(x, y)=4-x^{2}-y^{2}$ and $g(x, y)=4-x^{2}$.
8. An object moves along the curve $y=x^{2}, z=x^{3}$, with constant vertical speed $d z / d t=3$. Find the object's velocity and acceleration when it is at the point $(2,4,8)$.
[Adams 5/e, 11.1 \#18]
9. A duck flies with constant speed, 18 units/s, along the curve where the surfaces $y=x^{2} / 3$ and $z=(2 / 9) x y$ meet. As the duck passes through the point $P(3,3,2)$, its x-coordinate is increasing. Find the duck's velocity and acceleration at P.
10. Write S for the sphere $x^{2}+(y-1)^{2}+(z+2)^{2}=9$, and $P(k)$ for the plane $2 x+6 y+3 z=k$.
(a) Find $c>0$ such that $P(k)$ and S meet in exactly one point if $k= \pm c$. Use c in parts (b)-(c).
(b) When $|k|<c, P(k)$ meets S in a circle. Express this circle's centre and radius in terms of k.
(c) Assuming $|k|<c$, find \mathbf{r}_{0}, \mathbf{u}, and \mathbf{w} so that the circle of intersection between $P(k)$ and S is given by

$$
\mathbf{r}=\mathbf{r}_{0}+\mathbf{u} \cos (t)+\mathbf{w} \sin (t), \quad t \in \mathbb{R}, \quad \text { with } \quad \mathbf{u} \|\langle-3,0,2\rangle
$$

