Math 263 Assignment 1

Due September 15

1) Find the equation of a sphere if one of its diameters has end points $(2,1,4)$ and $(4,3,10)$.
2) Show that the set of all points P that are twice as far from $(-1,5,3)$ as from $(6,2,-2)$ is a sphere. Find its centre and radius.
3) Describe and sketch the set of all points in \mathbb{R}^{3} that satisfy
a) $x^{2}+y^{2}+z^{2}=2 z$
b) $x^{2}+z^{2}=4$
c) $z \geq \sqrt{x^{2}+y^{2}}$
d) $x^{2}+y^{2}+z^{2}=4, z=1$
e) $x+y+z=1$
4) The pressure $p(x, y)$ at the point (x, y) is determined by $x^{2}-2 p x+y^{2}+1=0$. Sketch the isobars (curves of constant pressure).
5) Compute the dot product of the vectors \vec{a} and \vec{b}. Find the angle between them.
a) $\vec{a}=\langle-1,1\rangle, \vec{b}=\langle 1,1\rangle$
b) $\vec{a}=\langle 1,1\rangle, \vec{b}=\langle 2,2\rangle$
c) $\vec{a}=\langle 1,2,1\rangle, \vec{b}=\langle-1,1,1\rangle$

6) Use vectors to prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and half its length.
7) Drop a perpendicular from the point $(6,5,1)$ to the line, L, through the points $(1,2,0)$ and $(3,4,6)$. Where does the perpendicular hit L ?
8) Use a projection to derive a formula for the distance from a point $\left(x_{1}, y_{1}\right)$ to the line $a x+b y=c$. Here, a and b are not both zero.
9) Compute $\langle 1,2,3\rangle \times\langle 4,5,6\rangle$.
10) Prove that
a) $\hat{\boldsymbol{\imath}} \times \hat{\boldsymbol{\jmath}}=\hat{\mathbf{k}}$
b) $\vec{a} \cdot(\vec{a} \times \vec{b})=\vec{b} \cdot(\vec{a} \times \vec{b})=0$
c) $|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$
11) Find the equation of the sphere which has the two planes $x+y+z=3, x+y+z=9$ as tangent planes if the centre of the sphere is on the planes $2 x-y=0,3 x-z=0$.
12) Find the equation of the plane that passes through the point $(-2,0,-1)$ and through the line of intersection of $2 x+3 y-z=0, x-4 y+2 z=-5$.
13) Find the equations of the line through $(2,-1,-1)$ and parallel to each of the two planes $x+y=0$ and $x-y+2 z=0$. Express the equations of the line in vector and scalar parametric forms and in symmetric form.

