
MATHEMATICS 263 December 2004 Final Exam Solutions

1) The temperature in the solid ellipsoid x2 + xz + 3
2z2 + 2(y − 2)2 ≤ 11 is given by

T (x, y, z) =
√

y + 3 e2x−z

(a) Find a line that is perpendicular to the surface of the ellipsoid and passes through the point P = (1, 1, 2).

Call this line L.

(b) Calculate the rate of temperature change per unit distance at P in the direction inward along L.

(c) Estimate the temperature of the solid 0.09 units from point P inward along L.

Solution. (a) Let g(x, y, z) be the LHS of the inequality. Then, an (outward pointing) normal to the surface

of the solid at (1, 1, 2) is given by

~N = ∇g(1, 1, 2) = 〈2x + z, 4(y − 2), x + 3z〉 |(1,1,2) = 〈4,−4, 7〉

Therefore, the normal line at this point can be written

~r(t) = 〈1, 1, 2〉+ t 〈4,−4, 7〉 , −∞ < t < ∞

(b) We want the directional derivative at P in the direction of the inward–pointing normal, that is in the

direction

n̂ = −~N

|−~N| = 〈−4,4,−7〉√
(−4)2+42+(−7)2

=
〈

− 4
9 , 4

9 ,− 7
9

〉

Since we have

∇T (x, y, z) =
〈

2
√

y + 3 e2x−z, 1
2 (y + 3)−1/2e2x−z,−

√

y + 3 e2x−z
〉

we may calculate the desired rate of change

Dn̂T (1, 1, 2) = n̂ · ∇T (1, 1, 2) =
〈

− 4
9 , 4

9 ,− 7
9

〉

·
〈

4, 1
4 ,−2

〉

= − 1
9

(c) The temperature at the new point P ′ may be linearly approximated by

T (P ′) = T (P ) + 0.09Dn̂T (P ) = 2 + 0.09
(

− 1
9

)

= 2 − 0.01 = 1.99

2) The mass m of an object with kinetic energy E and speed v is m = 2E/v2. If a body has a measured kinetic

energy of 200 and a measured speed of 100, but the measurements could have an error of ±1%, what is the

approximate maximum percentage error in the calculated value of the mass?

Solution. First note that ∂m
∂E = 2

v2 and ∂m
∂v = −4 E

v3 . Also, we know that ∆E = ±(200)(.01) = ±2 and

∆v = ±(100)(.01) = ±1. We need to compute ∆m.

∆m = m(200 + ∆E, 100 + ∆v) − m(200, 100)

≈ ∇m(200, 100) · 〈∆E, ∆v〉 by linear approximation

= ∂m
∂E (200, 100)∆E + ∂m

∂v (200, 100)∆v

= 2
1002 (±2) − 4 200

1003 (±1)

= ±4
1002 + ∓8

1002

= ±4+∓8
1002 = ±12

1002 = ±12
10,000

Since m ≈ 2 200
1002 = 4

100 and ± 12
10,000 = 4

100

(

± 3
100

)

the approximate error in the mass is ±3% .
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3) Find the minimum and maximum values of x2 + 2y2 − x in the region x2 + y2 ≤ 1.

Solution. Write f(x, y) = x2 + 2y2 − x. If the minimum/maximum value of f is achieved in x2 + y2 < 1, it

must be achieved at a critical point. The critical points are the solutions of

0 = fx = 2x − 1 0 = fy = 4y

So the only critical point is
(

1
2 , 0
)

, where f takes the value − 1
4 . The other possibility is that f takes its

min/max value on x2 +y2 = 1. The value of f(x, y) at (x, y) =
(

cos θ, sin θ
)

is g(θ) = cos2 θ+2 sin2 θ−cos θ.

So the minimum/maximum value of f on the boundary is the same as the minimum/maximum value of g(θ),

which we determine by finding the critical points of g(θ).

0 = g′(θ) = −2 sin θ cos θ + 4 sin θ cos θ + sin θ = sin θ
(

2 cos θ + 1
)

Hence the critical points are at

sin θ = 0 ⇐⇒ y = 0 ⇐⇒ (x, y) = (±1, 0) cos θ = − 1
2 ⇐⇒ x = − 1

2 ⇐⇒ (x, y) =
(

− 1
2 ,±

√
3

2

)

From the table of all possible candidates, below, we see that the minimum − 1
4 and the maximum is 9

4 .

(x, y)
(

1
2 , 0
)

(1, 0) (−1, 0)
(

− 1
2 ,

√
3

2

) (

− 1
2 ,−

√
3

2

)

f(x, y) − 1
4 0 2 9

4
9
4

4) Convert to polar coordinates and evaluate:

I =

∫ 2

0

∫

√
2x−x2

0

(

k + 3
√

x2 + y2
)

dy dx.

Express your answer in terms of the constant k.

Solution. Name the domain of integration D. This lies inside the vertical strip 0 ≤ x ≤ 2, where it runs up

from y = 0 to the curve where

y2 = 2x − x2, i.e., x2 − 2x + y2 = 0, i.e., (x − 1)2 + y2 = 1.

Hence D is a semicircle of radius 1. In polar coordinates,

x2 + y2 = 2x ⇔ r2 = 2r cos θ ⇔ r = 2 cos θ,

and the angles of interest obey 0 ≤ θ ≤ π/2, so

I =

∫ π/2

θ=0

∫ 2 cos θ

r=0

(k + 3r)r dr dθ =

∫ π/2

θ=0

[

k
2 r2 + r3

]2 cos θ

r=0
dθ =

∫ π/2

0

[

2k cos2 θ + 8 cos3 θ
]

dθ

From the formula sheet
∫ π/2

0 cos2 θ dθ = π
4 and

∫ π/2

0 cos3 θ dθ = 2
3 so that I = kπ

2 + 16
3 . Notice that the

coefficient of k can be found using geometry: it’s just the area of the semicircle D, which is π/2.
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5) Let ~F(x, y) = (sin y + y cosx)̂ııı + (sin x + x cos y)̂.

(a) Determine whether or not ~F is conservative. If it is, find a potential function for ~F.

(b) Calculate
∫

C
~F · d~r, where C is the piece of the parabola y = 2

π x2 from A = (0, 0) to B =
(

π
2 , π

2

)

.

Solution. (a) ~F might be conservative if ∂F1

∂y = ∂F2

∂x . In this case,

∂F1

∂y
= ∂

∂y
(sin y + y cosx) = cos y + cosx = ∂

∂x
(sin x + x cos y) = ∂F2

∂x

so we need to find a function ϕ(x, y) such that ∇ϕ = ~F. There are may ways to find such a function.

We could, by inspection, guess that ϕ(x, y) = x sin y + y sin x would work and then verify that ∇ϕ(x, y) =

(sin y + y cosx)̂ııı + (x cos y + sin x)̂ = ~F, as desired. Let’s try a more mechanical way to find this function.

To have ∂ϕ
∂x = F1 we need

ϕ(x, y) =

∫

F1dx =

∫

(sin y + y cosx) dx = x sin y + y sin x + C(y)

To also have ∂ϕ
∂y = F2 we need x cos y +sinx+C ′(y) = F2 = sin x+x cosy. Thus C ′(y) = 0, and hence C(y)

is a constant. We are free to choose C(y) = 0 so that ϕ(x, y) = x sin y + y sin x .

(b) The specified work integral is φ(B) − φ(A) = π .

6) Let D be the solid that is bounded below by the plane 2x + 2y + z + 2 = 0 and is bounded above by the

paraboloid z = 4 − (x + 1)2 − (y + 1)2. Let the field ~F be given by

~F(x, y, z) =
〈y, 1, z〉
√

x2 + y2

(a) Parameterize the curve of intersection of the plane and paraboloid in terms of the polar coordinate θ.

(b) Let S1 be the portion of the surface of D formed by the paraboloid. Parameterize S1.

(c) Let J denote the flux through S1 into the solid D. Express J as an iterated double integral using the

parameterization of part (b). Evaluate the inner integral. Evaluation of the remaining outer integral is

not required.

Solution. (a) The curve of intersection is given by the system

2x + 2y + z + 2 = 0 z = 4 − (x + 1)2 − (y + 1)2

Substituting the value for z given by the second equation into the first gives 2x+2y+4−(x+1)2−(y+1)2+2 =

0 or 4 − x2 − y2 = 0, the circle centered at the origin of radius 2. This yields the parameterization

x = 2 cos θ y = 2 sin θ z = −2 − 2x − 2y = −2 − 4 cos θ − 4 sin θ 0 ≤ θ ≤ 2π

(b) From part (a), we know that the (x, y) coordinates of the points of S1 will be contained within the disc

x2 + y2 ≤ 4, so using cylindrical coordinates, we have

x = r cos θ y = r sin θ z = 4−(r cos θ+1)2−(r sin θ+1)2 = 2−r2−2r cos θ−2r sin θ 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π

(c) For the parameterization

~r(r, θ) =
〈

r cos θ, r sin θ, 2 − r2 − 2r cos θ − 2r sin θ
〉
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we have

∂~r
∂r × ∂~r

∂θ =

∣

∣

∣

∣

∣

∣

ı̂ıı ̂ k̂

cos θ sin θ −2r − 2 cos θ − 2 sin θ
−r sin θ r cos θ 2r sin θ − 2r cos θ

∣

∣

∣

∣

∣

∣

= ı̂ıı

∣

∣

∣

∣

sin θ −2r − 2 cos θ − 2 sin θ
r cos θ 2r sin θ − 2r cos θ

∣

∣

∣

∣

− ̂

∣

∣

∣

∣

cos θ −2r − 2 cos θ − 2 sin θ
−r sin θ 2r sin θ − 2r cos θ

∣

∣

∣

∣

+ k̂

∣

∣

∣

∣

cos θ sin θ
−r sin θ r cos θ

∣

∣

∣

∣

=
〈

2r + 2r2 cos θ, 2r + 2r2 sin θ, r
〉

As the third component is positive, this is an upward normal and so outward from the surface. Therefore,

we want to use

n̂dS = −
(

∂~r
∂r × ∂~r

∂θ

)

dr dθ = −
〈

2r + 2r2 cos θ, 2r + 2r2 sin θ, r
〉

dr dθ

to calculate our flux integral. Converting ~F to cylindrical coordinated yields

~F = 〈sin θ, 1/r, 2/r − r − 2 cos θ − 2 sin θ〉

and so our flux integral is

J =

∫∫

S1

~F · n̂ dS =

∫ 2

0

dr

∫ 2π

0

dθ
[〈

sin θ, 1
r , 2

r − r − 2 cos θ − 2 sin θ
〉

•
(

−
〈

2r + 2r2 cos θ, 2r + 2r2 sin θ, r
〉 )]

=

∫ 2

0

dr

∫ 2π

0

dθ
[

−2r sin θ − 2r2 sin θ cos θ − 4 + r2 + 2r cos θ
]

=

∫ 2

0

dr

∫ 2π

0

dθ
[

−2r sin θ − r2 sin 2θ − 4 + r2 + 2r cos θ
]

=

∫ 2

0

dr
[

2r cos θ + 1
2r2 cos 2θ − 4θ + r2θ + 2r sin θ

]θ=2π

θ=0

=
∫ 2

0 dr
[

−8π + 2πr2
]

= −8πr + 2
3πr3

∣

∣

r=2

r=0
= −16π + 16

3 π = − 32
3 π

For the other order of integration

J =

∫ 2π

0

dθ

∫ 2

0

dr
[

−2r sin θ − 2r2 sin θ cos θ − 4 + r2 + 2r cos θ
]

=

∫ 2π

0

dθ
[

−4 sin θ − 16
3 sin θ cos θ − 8 + 8

3 + 4 cos θ
]

=
∫ 2π

0
dθ
[

−4 sin θ − 16
3 sin θ cos θ − 16

3 + 4 cos θ
]
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7) Let R denote the solid region defined by the simultaneous inequalities

x ≥ 0, y ≥ 0, z ≥ 0, 1 ≤ x2 + y2 + z2 ≤ 4

Let S denote the surface of R.

(a) Sketch R and S.

(b) Evaluate the outward flux of the following vector field through S:

~F(x, y, z) =
〈

x5 + y sin(z), y5 + z sin(x), 10x2y2z − x
〉

.

(c) Find the flux of ~F downward through the bottom of S, i.e., through the flat part of S that lies in the

plane z = 0.

Solution. (a) R is one quarter of the solid between a sphere of radius 1 and a sphere of radius 2.

(b) Here

∇ · ~F =
[

5x4] +
[

5y4] +
[

10x2y2] = 5(x4 + 2x2y2 + y4) = 5(x2 + y2)
2
.

By the Divergence Theorem, the desired flux is

J =

∫∫

S

~F · n̂ dS =

∫∫∫

R
∇ · ~F dV = 5

∫∫∫

R
(x2 + y2)2 dV.

Spherical coordinates are convenient for the volume integral.

J = 5

∫∫∫

R
(x2 + y2)

2
dV = 5

∫ π/2

θ=0

∫ π/2

φ=0

∫ 2

ρ=1

[

ρ2 sin2 φ
]2

ρ2 sin φ dρ dφ dθ

= 5

∫ π/2

θ=0

∫ π/2

φ=0

1
7

[

ρ7
]2

ρ=1
sin5 φ dφ dθ = 5 127

7

(

π
2

)

∫ π/2

0

sin5 φ dφ

From the formula sheet
∫ π/2

0
sin5 θ dθ = 8

15 so that J = 4×127
7×3 π .

(c) Write S0 for the bottom of S. On S0 we have z = 0; the outward unit normal is n̂ = −k, so

~F · n̂ = x.

Polar coordinates work well for this:

∫∫

S0

~F · n̂ dS =

∫∫

S0

x dA =

∫ π/2

θ=0

∫ 2

r=1

[r cos θ] r dr dθ

=

(

∫ π/2

θ=0

cos θ dθ

)

(
∫ 2

r=1

r2 dr

)

= (1)
(

23−13

3

)

= 7
3
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8) Let ~F(x, y, z) = (ex2

+ y) ı̂ıı +
(

sin(y3) + xz
)

̂ + z2
k̂. Use Stokes’s theorem to evaluate

∫

C
~F · d~r where C is

the curve x2 + y2 = 10, x + y + z = 4 with positive orientation (i.e. counter–clockwise) as viewed from high

on the z–axis.

Solution. Let D denote the disk x + y + z = 4, x2 + y2 ≤ 10 and let n̂ denote the upward pointing unit

normal to D. By Stokes’ theorem
∫

C
~F · d~r =

∫∫

D

∇× ~F · n̂ dS

For the specified vector field

∇× ~F = −x ı̂ıı + (z − 1) k̂

Viewing x + y + z = 4 as z = f(x, y) with f(x, y) = 4− x − y

n̂ dS =
(

− fx ı̂ıı − fy ̂ + k̂
)

dxdy = (̂ııı + ̂ + k̂) dxdy

∇× ~F · n̂ dS = (−x, 0, f(x, y) − 1) · (1, 1, 1) dxdy = (−x + f(x, y) − 1) dxdy

= (3 − 2x − y) dxdy

Since x and y are odd functions,

∫

C
~F · d~r =

∫∫

x2+y2≤10

(3 − 2x − y) dxdy = 3

∫∫

x2+y2≤10

dxdy = 3(10π) = 30π
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