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[25] 1. An antenna at the origin emits a signal whose strength at the point with polar coordinates [r, θ] is

f(r, θ) =
1 + cos(4θ)

r
, r > 0, −π

4
< θ <

π

4
.

(a) Write the level curve f(r, θ) = 2 in polar function form r = r(θ), −π
4
< θ <

π

4
.

(b) Sketch the region in the xy–plane consisting of all points whose polar coordinates obey the
equation r = r(θ) of part (a). Indicate the region where f(r, θ) ≥ 2.

(c) Find the area of the region described in part (b).

(a) The level curve has equation 2 = (1 + cos(4θ))/r. Solving for r gives the polar form:

r = r(θ) =
1 + cos(4θ)

2
, −π

4
< θ <

π

4
.

(b) The curve r = r(θ) encloses a single lobe along the x-axis. The rightmost point of the lobe is at
(x, y) = (1, 0). One has f(r, θ) ≥ 2 at points on and inside the closed curve just mentioned.

x

y θ=π/4

θ=−π/4

f(r,θ)>2

r = 0.5*(1+cos(4θ))

1

(c) Call the region R. Its area is∫∫
R
dA =

∫ π/4

−π/4

∫ 1
2 (1+cos(4θ))

0

r dr dθ =
∫ π/4

−π/4

r2

2

∣∣∣∣r=
1
2 (1+cos(4θ))

r=0

dθ

=
1
8

∫ π/4

−π/4
(1 + cos(4θ))2dθ =

1
8

∫ π/4

−π/4
(1 + 2 cos(4θ) + cos2(4θ))dθ def=

1
8
J.

There are several ways to find J . One is to let u = 4θ, du = 4 dθ:∫∫
R
dA =

1
32

∫ π

−π
(1 + 2 cosu+ cos2 u)du =

1
32

(
u+ 2 sinu+

u

2
+

1
4

sin 2u
)∣∣∣∣u=π

u=−π

=
1
32

(
3
2
π −

(
−3

2
π

))
=

3
32
π

Or, one could use basic geometry to make three simple observations:∫ π/4

−π/4
dθ =

π

2
,

∫ π/4

−π/4
2 cos(4θ) dθ = 0,

∫ π/4

−π/4
cos2(4θ) dθ =

π

4
.

Summing these values gives J = 3π/4, so A = J/8 = 3π/32, as before.

Continued on page 3
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[25] 2. Let R denote the solid defined by the system of inequalities
x ≥ 0, y ≥ 0, z ≥ 0, z ≤ 1− x2, x+ y + z ≤ 2.

(a) Express the volume of R as an iterated triple integral.

(b) Compute the volume of R.

(a) Looking at the figure below from the side (standing far out on the y axis)

z

y

x

x+ y + z = 2

z = 1− x2

we see a base region in the xz–plane consisting of 0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x2. The corresponding
triple integral is

V =
∫ 1

0

dx

∫ 1−x2

0

dz

∫ 2−x−z

0

dy.

(b) The volume is

V =
∫ 1

0

dx

∫ 1−x2

0

dz (2− x− z)

=
∫ 1

0

dx
[
(2− x)(1 − x2)− 1

2 (1 − x2)
2]

=
∫ 1

0

dx
[3
2
− x− x2 + x3 − 1

2x
4
]

=
3
2
− 1

2
− 1

3
+

1
4
− 1

10

=
49
60

Continued on page 4
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[25] 3. Let C be the curve from P = (1, 0, 0) to Q = (0, π/2, π/2) along the intersection of these surfaces:
x = cos(y), y = z.

Choose specific numbers A and B (state your choices clearly!) and then use them to evaluate both

I1 =
∫
C
(yex −Ax2 cos(z)) dx+ (ex +By4z2) dy + (2y5z − x3 sin(z)) dz

and I2 =
∫
C

〈
yex −Ax2 cos(z) + 3 sin2(y), ex +By4z2, 2y5z − x3 sin(z)

〉
• dr.

Hint : You can replace A and B with any values you like. Efficient choices would be best; taking A = 0
and B = 0 is not efficient at all.

Both I1 and I2 are line integrals of vector fields: I1 =
∫
C

F • dr and I2 = I1 +
∫
C

G • dr, where

F(x, y, z) =
〈
yex −Ax2 cos(z), ex +By4z2, 2y5z − x3 sin(z)

〉
, G(x, y, z) =

〈
3 sin2(y), 0, 0

〉
.

Line integrals are easy to evaluate when they represent work done by a conservative vector field. Could F
be conservative? Only when it passes the screening test, i.e., when

∂F1

∂z
=
∂F3

∂x
, i.e., Ax2 sin(z) = −3x2 sin(z), i.e., A = −3,

and
∂F2

∂z
=
∂F3

∂y
, i.e., 2By4z = 10y4z i.e., B = 5.

With these choices, ∇× F ≡ 0, and it is not hard to see that F ≡ ∇φ for the function
φ(x, y, z) = yex + y5z2 + x3 cos(z).

Consequently

I1 =
∫
C

F • dr =
∫
C
∇φ • dr = φ(Q)− φ(P ) =

[
π

2
+
(
π

2

)7

+ 0

]
− [0 + 0 + 1] =

(
π

2

)7

+
(
π

2

)
− 1.

With the same choices for A and B,

I2 = I1 +
∫
C

3 sin2(y) dx.

A simple parametrization for C is given by
x = cos(t), y = t, z = t, 0 ≤ t ≤ π/2; note dx = − sin(t) dt, dy = dt, dz = dt.

Hence

I2 = I1 + 3
∫ π/2

t=0

sin2(t)(− sin(t) dt) = I1 −
[

cos3(t)− 3 cos(t)
]π/2
t=0

= I1 − 2 =
(
π

2

)7

+
(
π

2

)
− 3.

[The integral of sin3(t) is given on the formula sheet. One may also write sin3(t) = [1 − cos2(t)] sin(t) and
then substitute u = cos(t).]

Continued on page 5
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[25] 4. Let S be the piece of the paraboloid z = 10− x2 − y2 where 1 ≤ z ≤ 6. Compute∫∫
S

√
4x2 + 4y2 + 1 dS.

Method 1: Rectangular Coordinates (then switch to polar).
We parametrize S by r(x, y) = 〈x, y, f(x, y)〉, where f(x, y) = 10− x2 − y2. Then we know that

dS =
(√

(fx)2 + (fy)2 + 1
)
dx dy =

(√
4x2 + 4y2 + 1

)
dx dy.

Also note that if z = 6 then r2 = 4 and if z = 1 then r2 = 9, so we are integrating over an annulus with
inner radius 2 and outer radius 3, which we will denote by R. Hence∫∫

S

(√
4x2 + 4y2 + 1

)
dS =

∫∫
R

(4x2 + 4y2 + 1) dx dy

=
∫ 2π

0

∫ 3

2

(4r2 + 1)r dr dθ

= 2π
∫ 3

2

(4r3 + r) dr

= 2π
[
r4 + r2/2

]3

2

= 2π[(34 + 32/2)− (24 + 22/2)]
= 2π(81 + 9/2− 16− 2) = π(162 + 9− 32− 4) = 135π.

Method 2: Cylindrical Coordinates.
We parametrize S in terms of (r, θ) by s(r, θ) = 〈r cos θ, r sin θ, g(r, θ)〉, where g(r, θ) = 10 − r2. Then we
know that

dS = ((gθ)2 + (rgr)2 + r2)1/2 dr dθ = (4r4 + r2)1/2 dr dθ.

Also note that if z = 6 then r2 = 4 and if z = 1 then r2 = 9, so we are integrating over an annulus with
inner radius 2 and outer radius 3, which we will denote by R. Hence∫∫

S

(√
4x2 + 4y2 + 1

)
dS =

∫∫
R

(4r2 + 1)1/2(4r4 + r2)1/2 dr dθ

=
∫ 2π

0

∫ 3

2

r(4r2 + 1) dr dθ

= 2π
∫ 3

2

(4r3 + r) dr

= 2π
[
r4 + r2/2

]3

2

= 2π[(34 + 32/2)− (24 + 22/2)] = 135π.

The End
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