[25] 1. An antenna at the origin emits a signal whose strength at the point with polar coordinates $[r, \theta]$ is

$$f(r,\theta) = \frac{1+\cos(4\theta)}{r}, \quad r > 0, \ -\frac{\pi}{4} < \theta < \frac{\pi}{4}.$$

- (a) Write the level curve $f(r, \theta) = 2$ in polar function form $r = r(\theta), -\frac{\pi}{4} < \theta < \frac{\pi}{4}$.
- (b) Sketch the region in the xy-plane consisting of all points whose polar coordinates obey the equation $r = r(\theta)$ of part (a). Indicate the region where $f(r, \theta) \ge 2$.
- (c) Find the area of the region described in part (b).
- (a) The level curve has equation $2 = (1 + \cos(4\theta))/r$. Solving for r gives the polar form:

$$r = r(\theta) = \frac{1 + \cos(4\theta)}{2}, \quad -\frac{\pi}{4} < \theta < \frac{\pi}{4}$$

(b) The curve $r = r(\theta)$ encloses a single lobe along the x-axis. The rightmost point of the lobe is at (x, y) = (1, 0). One has $f(r, \theta) \ge 2$ at points on and inside the closed curve just mentioned.

(c) Call the region \mathcal{R} . Its area is

$$\iint_{\mathcal{R}} dA = \int_{-\pi/4}^{\pi/4} \int_{0}^{\frac{1}{2}(1+\cos(4\theta))} r \, dr \, d\theta = \int_{-\pi/4}^{\pi/4} \frac{r^2}{2} \Big|_{r=0}^{r=\frac{1}{2}(1+\cos(4\theta))} d\theta$$
$$= \frac{1}{8} \int_{-\pi/4}^{\pi/4} (1+\cos(4\theta))^2 d\theta = \frac{1}{8} \int_{-\pi/4}^{\pi/4} (1+2\cos(4\theta)+\cos^2(4\theta)) d\theta \stackrel{\text{def}}{=} \frac{1}{8} J$$

There are several ways to find J. One is to let $u = 4\theta$, $du = 4 d\theta$:

$$\iint_{\mathcal{R}} dA = \frac{1}{32} \int_{-\pi}^{\pi} (1 + 2\cos u + \cos^2 u) du = \frac{1}{32} \left(u + 2\sin u + \frac{u}{2} + \frac{1}{4}\sin 2u \right) \Big|_{u = -\pi}^{u = \pi}$$
$$= \frac{1}{32} \left(\frac{3}{2}\pi - \left(-\frac{3}{2}\pi \right) \right) = \frac{3}{32}\pi$$

Or, one could use basic geometry to make three simple observations:

$$\int_{-\pi/4}^{\pi/4} d\theta = \frac{\pi}{2}, \quad \int_{-\pi/4}^{\pi/4} 2\cos(4\theta) \, d\theta = 0, \quad \int_{-\pi/4}^{\pi/4} \cos^2(4\theta) \, d\theta = \frac{\pi}{4}.$$

Summing these values gives $J = 3\pi/4$, so $A = J/8 = 3\pi/32$, as before.

19 Nov 2004 MATH 263 UBC ID: ____

[25] 2. Let \mathcal{R} denote the solid defined by the system of inequalities

$$x \ge 0$$
, $y \ge 0$, $z \ge 0$, $z \le 1 - x^2$, $x + y + z \le 2$

- (a) Express the volume of \mathcal{R} as an iterated triple integral.
- (b) Compute the volume of \mathcal{R} .
- (a) Looking at the figure below from the side (standing far out on the y axis)

we see a base region in the xz-plane consisting of $0 \le x \le 1, 0 \le z \le 1 - x^2$. The corresponding triple integral is

$$V = \int_0^1 dx \int_0^{1-x^2} dz \int_0^{2-x-z} dy.$$

(b) The volume is

$$V = \int_0^1 dx \int_0^{1-x^2} dz \ (2-x-z)$$

= $\int_0^1 dx \ \left[(2-x)(1-x^2) - \frac{1}{2}(1-x^2)^2 \right]$
= $\int_0^1 dx \ \left[\frac{3}{2} - x - x^2 + x^3 - \frac{1}{2}x^4 \right]$
= $\frac{3}{2} - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{10}$
= $\frac{49}{60}$

[25] 3. Let C be the curve from P = (1, 0, 0) to $Q = (0, \pi/2, \pi/2)$ along the intersection of these surfaces:

$$c = \cos(y), \quad y = z$$

Choose specific numbers A and B (state your choices clearly!) and then use them to evaluate both

$$I_{1} = \int_{\mathcal{C}} (ye^{x} - Ax^{2}\cos(z)) \, dx + (e^{x} + By^{4}z^{2}) \, dy + (2y^{5}z - x^{3}\sin(z)) \, dz$$

and
$$I_{2} = \int_{\mathcal{C}} \left\langle ye^{x} - Ax^{2}\cos(z) + 3\sin^{2}(y), \, e^{x} + By^{4}z^{2}, \, 2y^{5}z - x^{3}\sin(z) \right\rangle \bullet d\mathbf{r}.$$

Hint: You can replace A and B with any values you like. Efficient choices would be best; taking A = 0 and B = 0 is not efficient at all.

Both
$$I_1$$
 and I_2 are line integrals of vector fields: $I_1 = \int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r}$ and $I_2 = I_1 + \int_{\mathcal{C}} \mathbf{G} \bullet d\mathbf{r}$, where

$$\mathbf{F}(x, y, z) = \left\langle y e^x - A x^2 \cos(z), \, e^x + B y^4 z^2, \, 2y^5 z - x^3 \sin(z) \right\rangle, \qquad \mathbf{G}(x, y, z) = \left\langle 3 \sin^2(y), 0, 0 \right\rangle$$

Line integrals are easy to evaluate when they represent work done by a *conservative* vector field. Could \mathbf{F} be conservative? Only when it passes the screening test, i.e., when

$$\frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x}, \quad \text{i.e.,} \quad Ax^2 \sin(z) = -3x^2 \sin(z), \quad \text{i.e.,} \quad A = -3,$$

and
$$\frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}, \quad \text{i.e.,} \quad 2By^4 z = 10y^4 z \quad \text{i.e.,} \quad B = 5.$$

With these choices, $\nabla \times \mathbf{F} \equiv \mathbf{0}$, and it is not hard to see that $\mathbf{F} \equiv \nabla \phi$ for the function

$$\phi(x, y, z) = ye^{x} + y^{5}z^{2} + x^{3}\cos(z).$$

Consequently

$$I_1 = \int_{\mathcal{C}} \mathbf{F} \bullet d\mathbf{r} = \int_{\mathcal{C}} \nabla \phi \bullet d\mathbf{r} = \phi(Q) - \phi(P) = \left[\frac{\pi}{2} + \left(\frac{\pi}{2}\right)^7 + 0\right] - [0 + 0 + 1] = \left(\frac{\pi}{2}\right)^7 + \left(\frac{\pi}{2}\right) - 1.$$

With the same choices for A and B,

$$I_2 = I_1 + \int_{\mathcal{C}} 3\sin^2(y) \, dx.$$

A simple parametrization for C is given by

 $x = \cos(t), y = t, z = t, 0 \le t \le \pi/2;$ note $dx = -\sin(t) dt, dy = dt, dz = dt.$

Hence

$$I_2 = I_1 + 3 \int_{t=0}^{\pi/2} \sin^2(t) (-\sin(t) \, dt) = I_1 - \left[\cos^3(t) - 3\cos(t) \right]_{t=0}^{\pi/2} = I_1 - 2 = \left(\frac{\pi}{2}\right)^7 + \left(\frac{\pi}{2}\right) - 3.$$

[The integral of $\sin^3(t)$ is given on the formula sheet. One may also write $\sin^3(t) = [1 - \cos^2(t)] \sin(t)$ and then substitute $u = \cos(t)$.]

19 Nov 2004 MATH 263 UBC ID: _____

[25] 4. Let S be the piece of the paraboloid $z = 10 - x^2 - y^2$ where $1 \le z \le 6$. Compute

$$\iint_{\mathcal{S}} \sqrt{4x^2 + 4y^2 + 1} \, dS.$$

Method 1: Rectangular Coordinates (then switch to polar).

We parametrize S by $\mathbf{r}(x,y) = \langle x, y, f(x,y) \rangle$, where $f(x,y) = 10 - x^2 - y^2$. Then we know that

$$dS = \left(\sqrt{(f_x)^2 + (f_y)^2 + 1}\right) \, dx \, dy = \left(\sqrt{4x^2 + 4y^2 + 1}\right) \, dx \, dy.$$

Also note that if z = 6 then $r^2 = 4$ and if z = 1 then $r^2 = 9$, so we are integrating over an annulus with inner radius 2 and outer radius 3, which we will denote by R. Hence

$$\begin{split} \iint_{S} \left(\sqrt{4x^{2} + 4y^{2} + 1} \right) \, dS &= \iint_{R} (4x^{2} + 4y^{2} + 1) \, dx \, dy \\ &= \int_{0}^{2\pi} \int_{2}^{3} (4r^{2} + 1)r \, dr \, d\theta \\ &= 2\pi \int_{2}^{3} (4r^{3} + r) \, dr \\ &= 2\pi \left[r^{4} + r^{2}/2 \right]_{2}^{3} \\ &= 2\pi [(3^{4} + 3^{2}/2) - (2^{4} + 2^{2}/2)] \\ &= 2\pi (81 + 9/2 - 16 - 2) = \pi (162 + 9 - 32 - 4) = 135\pi. \end{split}$$

Method 2: Cylindrical Coordinates.

We parametrize S in terms of (r, θ) by $\mathbf{s}(r, \theta) = \langle r \cos \theta, r \sin \theta, g(r, \theta) \rangle$, where $g(r, \theta) = 10 - r^2$. Then we know that

$$dS = ((g_{\theta})^{2} + (rg_{r})^{2} + r^{2})^{1/2} dr d\theta = (4r^{4} + r^{2})^{1/2} dr d\theta.$$

Also note that if z = 6 then $r^2 = 4$ and if z = 1 then $r^2 = 9$, so we are integrating over an annulus with inner radius 2 and outer radius 3, which we will denote by R. Hence

$$\begin{split} \iint_{S} \left(\sqrt{4x^{2} + 4y^{2} + 1} \right) \, dS &= \iint_{R} (4r^{2} + 1)^{1/2} (4r^{4} + r^{2})^{1/2} \, dr \, d\theta \\ &= \int_{0}^{2\pi} \int_{2}^{3} r(4r^{2} + 1) \, dr \, d\theta \\ &= 2\pi \int_{2}^{3} (4r^{3} + r) \, dr \\ &= 2\pi \left[r^{4} + r^{2}/2 \right]_{2}^{3} \\ &= 2\pi [(3^{4} + 3^{2}/2) - (2^{4} + 2^{2}/2)] = 135\pi. \end{split}$$

This examination has 5 pages including this cover

The University of British Columbia

Midterm Examination – 19 Nov 2004

Mathematics 263

Multivariable and Vector Calculus

Closed book examination

Student Number_____

Time: 50 minutes

Name___

_____ Signature _____

Special Instructions:

To receive full credit, all answers must be supported with clear and correct derivations. No calculators, notes, or other aids are allowed. A formula sheet is provided with the test.

Rules governing examinations

1. All candidates should be prepared to produce their library/AMS cards upon request.			
2. Read and observe the following rules:			
No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of the examination.			
Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.			
CAUTION - Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.			
(a) Making use of any books, papers or memoranda, other than those authorized by the examiners.			
(b) Speaking or communicating with other candidates.			
(c) Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.			
3. Smoking is not permitted during examinations.			

1	25
2	25
3	25
4	25
Total	100