Parameterizing the Intersection of a Sphere and a Plane

Problem: Parameterize the curve of intersection of the sphere \mathcal{S} and the plane \mathcal{P} given by

$$
\begin{align*}
& x^{2}+y^{2}+z^{2}=9 \tag{S}\\
& x+y=2 \tag{P}
\end{align*}
$$

Solution: There is no foolproof method, but here is one method that works in this case and many others where we are intersecting a cylinder or sphere (or other "quadric" surface, a concept we'll talk about Friday) with a plane.

Step 1: Find an equation satisfied by the points of intersection in terms of two of the coordinates.
We'll eliminate the variable y. Note that the equation (\mathcal{P}) implies $y=2-x$, and substituting this into equation (\mathcal{S}) gives:

$$
\begin{array}{r}
x^{2}+(2-x)^{2}+z^{2}=9 \\
x^{2}+4-4 x+x^{2}+z^{2}=9 \\
2 x^{2}-4 x+z^{2}=5
\end{array}
$$

Step 2: Parameterize the equation from Step 1, writing the two coordinates (here, x and z) in terms of a parameter t.

There are many ways to parameterize

$$
\begin{equation*}
2 x^{2}-4 x+z^{2}=5 \tag{1}
\end{equation*}
$$

but one way is to note that an equation of the form

$$
u^{2}+v^{2}=R^{2}
$$

for a constant R and variables u and v is the equation of a circle of radius R in (u, v)-coordinates which can be parameterized using trigonometric functions as

$$
\left\{\begin{array}{l}
u=R \cos t \tag{2}\\
v=R \sin t,
\end{array} \quad 0 \leq t \leq 2 \pi\right.
$$

For equation (1), we can complete the square:

$$
\begin{aligned}
2 x^{2}-4 x+z^{2} & =5 \\
2\left(x^{2}-2 x\right)+z^{2} & =5 \\
2\left[(x-1)^{2}-1\right]+z^{2} & =5 \\
2(x-1)^{2}+z^{2} & =7
\end{aligned}
$$

which is of the correct form for $u=\sqrt{2}(x-1), v=z$, and $R=\sqrt{7}$. The parameterization (2) becomes:

$$
\begin{cases}\sqrt{2}(x-1)=\sqrt{7} \cos t \\ z=\sqrt{7} \sin t, & 0 \leq t \leq 2 \pi\end{cases}
$$

and solving for x and z we get a parameterization for two of the three coordinates:

$$
\left\{\begin{array}{ll}
x=\sqrt{\frac{7}{2}} \cos t+1 \\
z=\sqrt{7} \sin t
\end{array} \quad 0 \leq t \leq 2 \pi\right.
$$

Step 3: The final step (which is barely even a step) is to add a parameterization for the final coordinate.

From the plane equation (\mathcal{P}), we know $y=2-x$, so we can substitute in the parameterization for x to get:

$$
y=2-x=2-\left(\sqrt{\frac{7}{2}} \cos t+1\right)=1-\sqrt{\frac{7}{2}} \cos t
$$

The final parameterization for all three coordinates is:

$$
\left\{\begin{array}{l}
x=\sqrt{\frac{7}{2}} \cos t+1 \\
y=1-\sqrt{\frac{7}{2}} \cos t \\
z=\sqrt{7} \sin t,
\end{array} \quad 0 \leq t \leq 2 \pi\right.
$$

and so

$$
\mathbf{r}(t)=\left\langle\sqrt{\frac{7}{2}} \cos t+1,1-\sqrt{\frac{7}{2}} \cos t, \sqrt{7} \sin t\right\rangle, \quad 0 \leq t \leq 2 \pi
$$

