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Quiz #9 Solutions

1. (a) We already have T (e1) = (1, 2). To find T (e2), we note that

e2 =

[

0
1

]

=
1

2

([

1
2

]

−
[

1
0

])

so

T (e2) =
1

2

(

T

([

1
2

])

− T

([

1
0

]))

=
1

2

([

1
0

]

−
[

1
2

])

=

[

0
−1

]

so the standard matrix A for T is

A =

[

1 0
2 −1

]

(b) Since (3, 1) · (−2, 6) = 3(−2) + 1(6) = 0, the vectors are orthogonal. Since they are
nonzero, they are linearly independent, and two linearly independent vectors in R

2 form
a basis for R

2.

(c) We need to calculate
[T ]B =

[

[T (b1)]B [T (b2)]B
]

For the first column,

T (b1) = Ab1 =

[

1 0
2 −1

] [

3
1

]

=

[

3
5

]

Using Theorem 6.5, we can write (3, 5) as the linear combination:

[

3
5

]

=

[

3
5

]

·
[

3
1

]

[

3
1

] [

3
1

]

[

3
1

]

+

[

3
5

]

·
[

−2
6

]

[

−2
6

][

−2
6

]

[

−2
6

]

=
14

10

[

3
1

]

+
24

40

[

−2
6

]

=
7

5

[

3
1

]

+
3

5

[

−2
6

]

giving a coordinate vector

[T (b1)]B =

[

7/5
3/5

]

Similarly, for the second column,

T (b2) = Ab2 =

[

1 0
2 −1

] [

−2
6

]

=

[

−2
−10

]

Using Theorem 6.5, we can write (−2,−10) as the linear combination:

[

−2
−10

]

=

[

−2
−10

]

·
[

3
1

]

[

3
1

] [

3
1

]

[

3
1

]

+

[

−2
−10

]

·
[

−2
6

]

[

−2
6

] [

−2
6

]

[

−2
6

]

=
−16

10

[

3
1

]

+
−56

40

[

−2
6

]

=
−8

5

[

3
1

]

+
−7

5

[

−2
6

]
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giving a coordinate vector

[T (b1)]B =

[

−8/5
−7/5

]

That gives a final answer of

[T ]B =
[

[T (b1)]B [T (b2)]B
]

=

[

7/5 −8/5
3/5 −7/5

]

2. (a) We need to find the dimension of ColA. Row reducing the matrix to echelon form, we
find

1 −1 −1 0

4 8 5 9

2 2 1 3

R2→R2−4R1

1 −1 −1 0

0 12 9 9

2 2 1 3

R3→R3−2R1

1 −1 −1 0

0 12 9 9

0 4 3 3

R3→R3−
1

3
R2

1 −1 −1 0

0 12 9 9

0 0 0 0

There are two pivot columns, so the basis consists of two vectors. Therefore, ColA is a
subspace of dimension 2, a plane through the origin.

(b) By Theorem 6.3, (Col A)⊥ = Nul AT . Thus, we must find a basis of this null space.
Reducing

[

AT
0
]

to reduced echelon form, we get

1 4 2 0

−1 8 2 0

−1 5 1 0

0 9 3 0

R2→R2+R1

1 4 2 0

0 12 4 0

−1 5 1 0

0 9 3 0

R3→R3+R1

1 4 2 0

0 12 4 0

0 9 3 0

0 9 3 0

R3→R3−
3

4
R2

1 4 2 0

0 12 4 0

0 0 0 0

0 9 3 0

R4→R4−
3

4
R2

1 4 2 0

0 12 4 0

0 0 0 0

0 0 0 0

2
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R2→
1

12
R2

1 4 2 0

0 1 1

3 0

0 0 0 0

0 0 0 0

R1→R1−4R2

1 0 2

3 0

0 1 1

3 0

0 0 0 0

0 0 0 0

giving a general solution










x1 = − 2

3
x3

x2 = − 1

3
x3

x3 free

and a vector parametric form of

x =





x1

x2

x3



 =





− 2

3
x3

− 1

3
x3

x3



 = x3





− 2

3

− 1

3

1



 , x3 free

Therefore, the required basis is










−2/3
−1/3

1











3. (a) By Theorem 6.13, the least-squares solutions satisfy AT Ax = AT
b. Since

AT A =





1 4 1 2
0 3 0 5
2 6 −2 10













1 0 2
4 3 6
1 0 −2
2 5 10









=





22 22 44
22 34 68
44 68 144





and

AT
b =





1 4 1 2
0 3 0 5
2 6 −2 10













20
3
4

−7









=





22
−26
−20





we need to find a solution to




22 22 44
22 34 68
44 68 144



x =





22
−26
−20





Reducing the augmented matrix gives:

22 22 44 22

22 34 68 −26

44 68 144 −20

R2→R2−R1

22 22 44 22

0 12 24 −48

44 68 144 −20

R3→R3−2R1

22 22 44 22

0 12 24 −48

0 24 56 −64
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R3→R3−2R2

22 22 44 22

0 12 24 −48

0 0 8 32

R3→
1

8
R3

22 22 44 22

0 12 24 −48

0 0 1 4

R1→R1−44R3

22 22 0 −154

0 12 24 −48

0 0 1 4

R2→R2−24R3

22 22 0 −154

0 12 0 −144

0 0 1 4

R2→
1

12
R2

22 22 0 −154

0 1 0 −12

0 0 1 4

R1→R1−22R2

22 0 0 110

0 1 0 −12

0 0 1 4

R1→
1

22
R1

1 0 0 5

0 1 0 −12

0 0 1 4

Therefore, the unique least-squares solution is

x̂ =





5
−12

4





(b) Let A =
[

a1 a2 a3

]

. Because the rank of A is known to be 3, all three columns form
a basis for ColA.

Applying the Gram-Schmidt process to the basis {a1, a2, a3}, the first vector is just the
first column:

v1 = a1 =









1
4
1
2









The second vector is calculated by:

v2 = a2 −
a2 · v1

v1 · v1

v1 =









0
3
0
5









−









0
3
0
5









·









1
4
1
2

















1
4
1
2









·









1
4
1
2

















1
4
1
2









=









0
3
0
5









− 22

22









1
4
1
2









=









−1
−1
−1

3









4
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The third vector is

v3 = a3 −
a3 · v1

v1 · v1

v1 −
a3 · v2

v2 · v2

v2 =









2
6

−2
10









−









2
6

−2
10









·









1
4
1
2

















1
4
1
2









·









1
4
1
2

















1
4
1
2









−









2
6

−2
10









·









−1
−1
−1

3

















−1
−1
−1

3









·









−1
−1
−1

3

















−1
−1
−1

3









=









2
6

−2
10









− 44

22









1
4
1
2









− 24

12









−1
−1
−1

3









=









2
6

−2
10









− 2









1
4
1
2









− 2









−1
−1
−1

3









=









2
0

−2
0









giving an orthogonal basis of






















1
4
1
2









,









−1
−1
−1

3









,









2
0

−2
0























(c) We can convert the orthogonal basis to an orthonormal one by normalizing each vector.
The lengths of the vectors are:

‖v1‖ =
√

12 + 42 + 12 + 22 =
√

22

‖v2‖ =
√

(−1)2 + (−1)2 + (−1)2 + 32 =
√

12

‖v3‖ =
√

22 + 02 + (−2)2 + 02 =
√

8

so the normalized vectors are

u1 =
1√
22

v1 =









1/
√

22

4/
√

22

1/
√

22

2/
√

22









u2 =
1√
12

v2 =









−1/
√

12

−1/
√

12

−1/
√

12

3/
√

12









u3 =
1√
8
v3 =









2/
√

8
0

−2/
√

8
0









giving an orthnormal basis






















1/
√

22

4/
√

22

1/
√

22

2/
√

22









,









−1/
√

12

−1/
√

12

−1/
√

12

3/
√

12









,









2/
√

8
0

−2/
√

8
0























(d) The orthonormal basis from part (c) gives the columns for the matrix Q:

Q =









1/
√

22 −1/
√

12 2/
√

8

4/
√

22 −1/
√

12 0

1/
√

22 −1/
√

12 −2/
√

8

2/
√

22 3/
√

12 0









5
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We can calculate R using the formula R = QT A, like so:

R = QT A =





1/
√

22 4/
√

22 1/
√

22 2/
√

22

−1/
√

12 −1/
√

12 −1/
√

12 3/
√

12

2/
√

8 0 −2/
√

8 0













1 0 2
4 3 6
1 0 −2
2 5 10









=





22/
√

22 22/
√

22 44/
√

22

0 12/
√

12 24/
√

12

0 0 8/
√

8



 =





√
22

√
22 2

√
22

0
√

12 2
√

12

0 0
√

8





Ugly, but not impossible.

4. (a) The eigenvalues of A are given by the characteristic polynomial:

det(A − λI) =

∣

∣

∣

∣

∣

∣

8 − λ −4 0
−4 2 − λ 0
0 0 5 − λ

∣

∣

∣

∣

∣

∣

= (5 − λ)

∣

∣

∣

∣

8 − λ −4
−4 2 − λ

∣

∣

∣

∣

= (5 − λ)((8 − λ)(2 − λ) − 16) = (5 − λ)(λ2 − 10λ) = (5 − λ)λ(λ − 10)

giving eigenvalues 0, 5, and 10.

For λ = 0, the eigenspace is given by the solution set associated with augmented matrix

[

A − 0I 0
]

=





8 −4 0 0
−4 2 0 0

0 0 5 0





Reducing gives

8 −4 0 0

−4 2 0 0

0 0 5 0

R2→R2+
1

2
R1

8 −4 0 0

0 0 0 0

0 0 5 0

R2↔R3

8 −4 0 0

0 0 5 0

0 0 0 0

R2→
1

5
R2

8 −4 0 0

0 0 1 0

0 0 0 0

R1→
1

8
R1

1 − 1

2 0 0

0 0 1 0

0 0 0 0

The general solution is










x1 = 1

2
x2

x3 = 0

x2 free

6
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and the vector parametric form is

x =





x1

x2

x3



 =





1

2
x2

x2

0



 = x2





1/2
1
0



 , x2 free

giving eigenspace basis










1/2
1
0











For λ = 5, the eigenspace is given by the reduction

[

A − 5I 0
]

3 −4 0 0

−4 −3 0 0

0 0 0 0

R2→R2+
4

3
R1

3 −4 0 0

0 − 25

3 0 0

0 0 0 0

R2→−
3

25
R2

3 −4 0 0

0 1 0 0

0 0 0 0

R1→R1+4R2

3 0 0 0

0 1 0 0

0 0 0 0

R1→
1

3
R1

1 0 0 0

0 1 0 0

0 0 0 0

The general solution is










x1 = 0

x2 = 0

x3 free

and the vector parametric form is

x =





x1

x2

x3



 =





0
0

x3



 = x3





0
0
1



 , x3 free

giving eigenspace basis










0
0
1











Finally, for λ = 10, the eigenspace is given by the reduction

[

A − 10I 0
]

=

−2 −4 0 0

−4 −8 0 0

0 0 −5 0

R2→R2−2R1

−2 −4 0 0

0 0 0 0

0 0 −5 0

7
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R2↔R3

−2 −4 0 0

0 0 −5 0

0 0 0 0

R2→−
1

5
R2

−2 −4 0 0

0 0 1 0

0 0 0 0

R1→−
1

2
R1

1 2 0 0

0 0 1 0

0 0 0 0

The general solution is










x1 = −2x2

x3 = 0

x2 free

and the vector parametric form is

x =





x1

x2

x3



 =





−2x2

x2

0



 = x2





−2
1
0



 , x2 free

giving eigenspace basis










−2
1
0











Since A is symmetric, these three basis vectors, each from a different eigenspace, must
be orthogonal, so there is no need to orthogonalize anything. However, the vectors must
still be normalized:

(λ = 0)
1

∥

∥

∥

∥

∥

∥





1/2
1
0





∣

∣

∣

∣

∣

∣





1/2
1
0



 =
1

√

5/4





1/2
1
0



 =
2√
5





1/2
1
0



 =





1/
√

5

2/
√

5
0





(λ = 5)
1

∥

∥

∥

∥

∥

∥





0
0
1





∣

∣

∣

∣

∣

∣





0
0
1



 =
1√
1





0
0
1



 =





0
0
1





(λ = 10)
1

∥

∥

∥

∥

∥

∥





−2
1
0





∣

∣

∣

∣

∣

∣





−2
1
0



 =
1√
5





−2
1
0



 =





−2/
√

5

1/
√

5
0





8
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This gives matrices

P =





1/
√

5 0 −2/
√

5

2/
√

5 0 1/
√

5
0 1 0



 D =





0 0 0
0 5 0
0 0 10





(b) Writing P =
[

u1 u2 u3

]

, the spectral decomposition of A is:

A = λ1u1u
T

1 + λ2u2u
T

2 + λ3u3u
T

3

= 0





1/
√

5

2/
√

5
0





[

1/
√

5 2/
√

5 0
]

+ 5





0
0
1





[

0 0 1
]

+ 10





−2/
√

5

1/
√

5
0





[

−2/
√

5 1/
√

5 0
]

= 0





1/5 2/5 0
2/5 4/5 0

0 0 0



 + 5





0 0 0
0 0 0
0 0 1



 + 10





4/5 −2/5 0
−2/5 1/5 0

0 0 0





(c) Because A’s eigenvalues are all greater than or equal to zero, it is positive semidefinite
(but not positive definite, since one of the eigenvalues is 0).

5. (a) Because A is lower triangular, its eigenvalues are the entries on its main diagonal,
namely 1 and 4. For λ = 1, the eigenspace is given by

[

3 0
1 0

] R1↔R2
R2→R2−3R1

[

1 0
0 0

]

giving vector parametric form

x =

[

x1

x2

]

=

[

0
x2

]

= x2

[

0
1

]

, x2 free

and the basis
{[

0
1

]}

For λ = 4, the eigenspace is given by
[

0 0
1 −3

]

R1↔R2

[

1 −3
0 0

]

giving vector parametric form

x =

[

x1

x2

]

=

[

3x2

x2

]

= x2

[

3
1

]

and the basis
{[

3
1

]}

This gives matrices

P =

[

0 3
1 1

]

D =

[

1 0
0 4

]
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(b) An eigenvector for eigenvalue 1 is given by the basis vector u =

[

0
1

]

above. Similarly,

an eigenvector for eigenvalue 4 is v =

[

3
1

]

.

If the initial colony is given by x0 = cu, then

x1 = Ax0 = A(cu) = cAu = cu = x0

with the second-last equality following from the fact that u is an eigenvector for eigen-
value 1. Similarly, x2 = x0, and so on. That is, a population started at a scalar multiple
of u does not change from hour to hour.

On the other hand, if the initial colony is given by x0 = cv, then

x1 = Ax0 = A(cv) = cAv = 4cv = 4x0

with the second-last equality following from the fact that v is an eigenvector for eigen-
value 4. Similarly,

x2 = Ax1 = A(4cv) = 4cAv = 42cv = 42
x0

That is, a population started at a scalar multiple of v quadruples in size every hour
without the proportions of wild type and heat sensitive bacteria changing.

(c) Since u and v are not scalar multiples of each other, they are two, linearly independent
vectors in R

2, so they must form a basis for R
2.

(d) This follows from the same argument as in part (b). That is,

x1 = Ax0 = A(cu + dv) = cAu + dAv = cu + 4dv

with the second-last equality following from the linearity of x 7→ Ax and the final
equality following from the fact that u and v are eigenvectors for eigenvalues 1 and 4
respectively.

Similarly,
x2 = Ax1 = A(cu + 4dv) = cAu + 4dAv = cu + 42dv

The appropriate formula for general k will be:

xk = cu + 4kdv

(e) The vector x0 = (10, 0) can be expressed as

x0 =

[

10
0

]

= −10

3

[

0
1

]

+
10

3

[

3
1

]

= −10

3
u +

10

3
v

These weights c = −10/3 and d = 10/3 are calculated in the usual manner by solving
the vector equation x0 = cu + dv for unknowns c and d.

By part (d), we have

xk = cu + 4kdv = −10

3

[

0
1

]

+ 4k
10

3

[

3
1

]

=

[

10(4k)
(10/3)(4k − 1)

]
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which gives

x3 =

[

10(43)
(10/3)(43 − 1)

]

=

[

10(64)
(10/3)(63)

]

=

[

640
210

]

If you missed the correction to the quiz and used x0 = (1, 0) instead, you should get
the formula

xk =

[

4k

(4k − 1)/3

]

and

x3 =

[

43

(43 − 1)/3

]

=

[

64
21

]
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