Math 221 (101) Matrix Algebra November 22, 2002

Quiz #8 Solutions

L. (a) 1 4
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11 (g
vicvs= 20| 0 =1(=3)+2(0) +3(1) =0
3] | 1]
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Only vy and v3 are an orthogonal pair.
(b) ] 1]
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[ 4] [ 4]
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[—3] [-3]
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(c) 1 4 -3
dist(vy,va) = |[vi —va| = || [2| — |-1||| = 3 [=+/(=3)2+32+22 =22
3 2

2. (a) From the given information, Ap; = p;, Apy; = 2p,, and Ap; = 2p;. That is, by
definition, p; is an eigenvector for A associated with eigenvalue 1, and p, and pq
are eigenvectors for A associated with eigenvalue 2. Note that p, and ps are linearly
independent since neither is a scalar multiple of the other. In short, we have three
linearly independent eigenvectors and their associated eigenvalues.

By the Diagonalization Theorem, we may write

A=PDP!
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for an invertible matrix P whose columns are these eigenvectors:

1 3 2
P={-2 1 -2
1 0 1

and a diagonal matrix D whose diagonal entries are the corresponding eigenvalues:

1
D=0
0

O N O
N OO

We know P and D, so to calculate the matrix A, we need only calculate P~!. Using
the usual algorithm:

(1) 3 2 100 D3 210 0
P 1) = -2 1 -2 0 1 0| fF2=Re2R1 19 7 2 2 1 0
1 0 1 0 0 1 1010 0 1
K
1 3 2 1 00 s 2 1 00
mers-m_ |0 (7) 2 2 1 0| MUEHIR 0 2 2 1 0
0 -3 -1 -1 0 1 00 €Y - 21
h o
(113 2 1 0 o0 (113 0 -1 6 14
R3——T7R3 0 2 92 1 0 R1—-RI1-2R3 | 2 9 1 0
0 0 1 -3 -7 0 0() 1 -3 -7
0 f
(1] 3 0 -1 6 14 730—1 6 14
RoR22R3 g (7) 0 0 7 14 m_’—%m>o@o 0 1 2
0 0f1] 1 -3 -7 0 0f1] 1 -3 -7
f o
(1] o o -1 3 8 |
AR o iJo o 1 2 | =[1 P
0 0f[1] 1 -3 -7
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That is
-1 8
Pl=|0 1 2
1 -3 -7
SO
1 3 2]t 0o o]\ [-1 3 8]
A=PDP'=||-2 1 -2/]|0 2 0 0o 1 2
1o 1jjooz2/)|1 -3 -7
1 6 4] [-1 3 8] 3 -3 -8
=-2 2 -4 0 1 2] = [-2 8 16
1 0 2| 1 =3 7] 1 -3 -6
(b) By Theorem 5.8 (p. 325), this is just the diagonal matrix D:
1 00
[Tls=D=1]0 2 0
0 0 2
3. (a) up-up=1(2)+(-2)(1)+0(-4) =0
(b) By the Orthogonal Decomposition Theorem,
-1 1 -1 2
-8 - -2 ) -8 - 1 5
. . —13 0 —13 —4
v = v u; + —V "2 U = ———=—F "5 2|+ === 1
up - u Us - U 1 1 0 2 2 4
—21 - 1-2 1] - 1
0 0 —4] —4
1 2 1 [ 2 7
1 42
:35—2+51—3—2+21——4
0 —4 0 4 -8
And
-1 7 -8
z=v—v=| 8| —|—-4| = |4
—13 -8 -5

Note that we can check our work by verifying that z is orthogonal to u; and uy (which
it is).

(¢) By the Orthogonal Decomposition Theorem (or the way we checked our work), we know
that z is orthogonal to u; and uy. In part (a), we showed that u; L us. Therefore, all
pairs of these vectors are orthogonal, so B is an orthogonal set.

However, by Theorem 6.4, 8 orthogonal and all nonzero implies B is linearly indepen-
dent. Any set of the three linearly independent vectors is a basis for R? by the Basis
Theorem.

Therefore, B is a basis for R3 that is also an orthogonal set, so it is an orthogonal basis
for IR3.
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(d) Using Theorem 6.5,

1 1 2 -8
0] =c1 | 2| +co 1 +c3|—4
-1 0 —4 -5
where
1 1 1 2 1 —8
-1 0 1 -1 —4 6 —1 ) -3
61:7:— 62:7:— 03:7:—
1 1 5 2 2 21 -8 -8 105
0 0 —4 —4 -5 -5
giving a coordinate vector
-8 1/5 1/5
-4 =1 6/21 | =| 2/7
—5] —3/105 -1/35

4. Let the entries of the n x n matrix UTU be UTU = [¢;;]. By the Row-Column Rule for
Computing AB on p. 103, the (i, j)th entry of UTU may be written

cij = ainbij + aigboj + - + Qinbyj (1)
where UT' = [a;;] and U = [b;;]. Observe that a;; = bj; by the definition of transposition.
Now, as U = [ul e un} are the columns of U, we have

blj_
ij
Uj = .
bn;j

and, furthermore,

b1 a1

ba; a2
ui = =

bni Ain

so equation (1) can be rewritten
Cij =u; - Uj

That is, the (i,j)th column of UTU is the inner product u; - u;.

If U has orthogonal columns, then—Dby definition—we have

Cij:ui'Uj:O
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for all ¢ # j. That is, all off-diagonal elements of U are zero, so U is a diagonal matrix.

Conversely, if U is a diagonal matrix, then all its off-diagonal elements are zero, implying

ui'uj:CijZO

for all ¢ # j. But this means the columns of U are orthogonal.

That’s all we needed to prove.

5. (a)

(b)

By definition x € W iff dist(x, u) = dist(x, —u) iff |[x —u|| = [|x — ()| iff |x —u| =
[x+ul iff \/(x—u)-(x—u) =+/(x+u)-(x+u). But these are equal if and only if
their squares are equal: (x —u)-(x —u) = (x+u) - (x+u).

By the properties of inner products,

(¢~ 1) (- w) = (x - ) x4 (- w) - (~u)
=x-Xx—u-x+x-(—u)—u-(—u)
=X-X—u-X—X-u+u-u

=X-X—2Xx-u4+u-u
Similarly,

(x+u)-(x+u)=(x+u)-x+(x+u)-u
=Xx-Xtu-x+x-ut+u-u

=x-X+2x-u+u-u

By part (a), x € Wiff (x —u) - (x —u) = (x+u) - (x + u). But, by part (b), this is
true iff
X-X—2x-u+u-u=x-Xx+2x-u+u-u

Subtracting x - x and u - u from both sides, this is true iff

—2x-u=2x-u
—4x-u=0

x-u=0

That is, x e W iff x-u=0.
We need only prove that x-u = 0 iff x - v = 0 for every v = cu. This fact, combined
with part (c), will give the result.
If x-u =0, then

x-v=x-(cu)=cx-u=c0=0
Conversely, if x - v = 0 for every v = cu then it’s true, in particular, for ¢ = 1, and
x-u=0.



