Math 221 (101) Matrix Algebra October 25, 2002

Quiz #5 Solutions
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(c) For the matrices with positive determinants, the transformed square has its points 1,
2, 3, and 4 in counter-clockwise order (the same order as the original square). For the

matrices with negative determinants, the transformed square has its points in opposite
order.
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2. (a) Completing the reduction to echelon form, we get:

12 0 6 1 1 0 0 0 0
01 1 3 1 0 1 000
00C) -3 1 -1 1 100
00 0 -3 0 -1 1 010
00 2 9 -1 2 -2 200 1
L ) i

12 0 6 1 1 0000
01 1 3 1 0 1 0 0 0
BS—ms+2rs g0 -1 -3 1 -1 1 1 0 0
00 0 (30 -1 1010
00 0 3 1 0 020 1
L ) i
2 0 6 1 1 000 0
of1] 1 3 1 0 100 0
woo—z&l—llloo
00 0 [=30 -11010
00 0 1] -1 1 2 1 1

Note that we used only row replacement operations.

(b) Since we used only row replacement operations and no row interchange (or scaling)
operations, the determinant of the original matrix A is given by the product of the main
diagonal of the echelon form of A (the first five columns of this augmented matrix).
That is,

det A = (1)(1)(~1)(~3)(1) = 3

Since the determinant in nonzero, the matrix is invertible.
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(¢) Completing the reduction to reduced echelon form, we get:

2 o 1 1 00 0 0
0 1 3 1 0 10 0 0
00 -3 1 -1 110 0
00 0 0 -1 10 10
o0 0o o (()-11211
l
7 20 6 0 2 -1 -2 -1 —1|
Ri-R1-R5 | O 1 3 0 1 0 -2 -1 -1
R2—R2—R5
(B R3RS g -3 0 0 0 -1 -1 -1
00 0 (3o -1 1 0o 1 o0
0 0 0 -1 1 2 1 1
f
7 5 0 00 0 1 -2 1 ~—1|
R1—R1+4+2R4
emeieas R 1 00 0 1 -2 0 -1
Rie—gm g o9 C) oo 1 -1 -1 -2 -1
00 0 o L -1 0o -1 o
0 0 0 -1 1 2 1 1

R3——R3
R2—R2—R3 0 0 0o 0 -1 1 1 2 1
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As expected (since we already know that A is invertible), the left half of the reduced
echelon form is the identity matrix. Therefore, the right half is A~'. That is,

R1—R1—-2R2
_

-2 1 4 5 3
1 0 -3 -2 -2
At=1-1 1 1 2 1
1 1 1
3 3 0 -3 0
-1 1 2 1 1
Double-checking the answer:
1 2 06 1][-2 1 4 5 3 1 00 00
o 1 13 1|1 0 -3 -2 =2 01 000
AAT' =] 1 1 -2 0 1/|-1 1 1 2 1|l=f0 01 0 0
1 1 -10 0|4+ -4 0 —% 0 00010
-2 -2 4 3 —1||-1 1 2 1 1 000 01

No. The columns of A must be linearly dependent, since there are more vectors (n)
than the number of elements in each vector (m). Therefore, T' cannot be one-to-one.

Yes. One simple example is the projection transformation T: R? — R? given by

-]

As x varies over all vectors in R3, T'(x) will take on all values in R?.

T(x)=T o

€2
€3

Any linear transformation 7' whose standard matrix has a pivot position in every row
(so its columns span all of R™) will work.

Yes. One simple example is the transformation T: R? — R? given by

ro-o((:)-

Obviously, no two unequal vectors can map to the same image.

Any linear transformation 7" whose standard matrix has linearly independent columns
(that is, whose standard matrix has a pivot position in every column) will work.
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No. The columns of A must span R™. This can only happen if there is a pivot position
in every row, but there can only be a maximum of n pivot positions (one in each column)
and this is less than the number of rows m.

Since AT A is n x n, its inverse (AT A)~! is n x n, too. Thus, C, is a product of an
m X n, an n X n, and an n X m matrix. Therefore, it is an m X m matrix.

From the properties of inverses and transposes:

CT = (A(AT A)~ 1 A7)

= (AN (AT ()"
ATA)T) 1 AT
A)T(AT)T)—lAT
AT A)~1AT

(
(

A
=A
= A(

— =~

=C

Note that you can’t use (AT A)~! = A=1(AT)~1. The matrix A may not even be square,
so A7! and (AT)~! may not even be defined.

Similarly for the second part:
= (A( (ATA 1AT) (A(ATA)*lAT)
= A(( ATA 1ATA) (AT A)~t AT
= A(ATA) 7t AT

Since v is in the span of the columns of A, we can write it as v = Ax for some vector x
of weights. Then
Cv=CAx
= (A(ATA)_lAT)Ax
= A((ATA)*lATA)x
= Ax

=v
For any vector w € R™, we have
Cw = (A(ATA)_lAT)W = A((ATA)_lATW)

Since (AT A)~'ATw is an n x 1 vector of weights (even though it’s an ugly one), this
shows that C'w is some linear combination of the columns of A.



