

Quiz #5 Solutions

(c) For the matrices with positive determinants, the transformed square has its points 1, 2, 3, and 4 in counter-clockwise order (the same order as the original square). For the matrices with negative determinants, the transformed square has its points in opposite order.

- $\mathbf{6}$ 1 3 $1 \ 0 \ 1$ 0 0 0 0 0 $\mathbf{2}$ $^{-1}$ -2 ≙ $0 \ 1$ $1 \ 0$ 0 0 -11 1 $R5 \rightarrow R5 + 2R3$ -1 $1 \ 0$ $0 \ 2$ ♠ $R5 \rightarrow R5 + R4$
- **2.** (a) Completing the reduction to echelon form, we get:

Note that we used only row replacement operations.

(b) Since we used only row replacement operations and no row interchange (or scaling) operations, the determinant of the original matrix A is given by the product of the main diagonal of the echelon form of A (the first five columns of this augmented matrix). That is,

$$\det A = (1)(1)(-1)(-3)(1) = 3$$

Since the determinant in nonzero, the matrix is invertible.

(c) Completing the reduction to reduced echelon form, we get:

As expected (since we already know that A is invertible), the left half of the reduced echelon form is the identity matrix. Therefore, the right half is A^{-1} . That is,

$$A^{-1} = \begin{bmatrix} -2 & 1 & 4 & 5 & 3\\ 1 & 0 & -3 & -2 & -2\\ -1 & 1 & 1 & 2 & 1\\ \frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0\\ -1 & 1 & 2 & 1 & 1 \end{bmatrix}$$

Double-checking the answer:

$$AA^{-1} = \begin{bmatrix} 1 & 2 & 0 & 6 & 1 \\ 0 & 1 & 1 & 3 & 1 \\ 1 & 1 & -2 & 0 & 1 \\ 1 & 1 & -1 & 0 & 0 \\ -2 & -2 & 4 & 3 & -1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 4 & 5 & 3 \\ 1 & 0 & -3 & -2 & -2 \\ -1 & 1 & 1 & 2 & 1 \\ \frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 \\ -1 & 1 & 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- **3.** (a) No. The columns of A must be linearly dependent, since there are more vectors (n) than the number of elements in each vector (m). Therefore, T cannot be one-to-one.
 - (b) Yes. One simple example is the projection transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$T(\mathbf{x}) = T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

As **x** varies over all vectors in \mathbb{R}^3 , $T(\mathbf{x})$ will take on all values in \mathbb{R}^2 .

Any linear transformation T whose standard matrix has a pivot position in every row (so its columns span all of \mathbb{R}^m) will work.

(c) Yes. One simple example is the transformation $T \colon \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$T(\mathbf{x}) = T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

Obviously, no two unequal vectors can map to the same image.

Any linear transformation T whose standard matrix has linearly independent columns (that is, whose standard matrix has a pivot position in every column) will work.

- (d) No. The columns of A must span \mathbb{R}^m . This can only happen if there is a pivot position in every row, but there can only be a maximum of n pivot positions (one in each column) and this is less than the number of rows m.
- 4. (a) Since $A^T A$ is $n \times n$, its inverse $(A^T A)^{-1}$ is $n \times n$, too. Thus, C, is a product of an $m \times n$, an $n \times n$, and an $n \times m$ matrix. Therefore, it is an $m \times m$ matrix.
 - (b) From the properties of inverses and transposes:

$$C^{T} = (A(A^{T}A)^{-1}A^{T})^{T}$$

= $(A^{T})^{T}((A^{T}A)^{-1})^{T}(A)^{T}$
= $A((A^{T}A)^{T})^{-1}A^{T}$
= $A((A)^{T}(A^{T})^{T})^{-1}A^{T}$
= $A(A^{T}A)^{-1}A^{T}$
= C

Note that you can't use $(A^T A)^{-1} = A^{-1} (A^T)^{-1}$. The matrix A may not even be square, so A^{-1} and $(A^T)^{-1}$ may not even be defined. Similarly for the second part:

$$C^{2} = (A(A^{T}A)^{-1}A^{T})(A(A^{T}A)^{-1}A^{T})$$

= $A((A^{T}A)^{-1}A^{T}A)(A^{T}A)^{-1}A^{T}$
= $A(A^{T}A)^{-1}A^{T}$
= C

(c) Since \mathbf{v} is in the span of the columns of A, we can write it as $\mathbf{v} = A\mathbf{x}$ for some vector \mathbf{x} of weights. Then

$$C\mathbf{v} = CA\mathbf{x}$$

= $(A(A^TA)^{-1}A^T)A\mathbf{x}$
= $A((A^TA)^{-1}A^TA)\mathbf{x}$
= $A\mathbf{x}$
= \mathbf{v}

(d) For any vector $\mathbf{w} \in \mathbb{R}^m$, we have

$$C\mathbf{w} = \left(A(A^T A)^{-1} A^T\right)\mathbf{w} = A\left((A^T A)^{-1} A^T \mathbf{w}\right)$$

Since $(A^T A)^{-1} A^T \mathbf{w}$ is an $n \times 1$ vector of weights (even though it's an ugly one), this shows that $C \mathbf{w}$ is some linear combination of the columns of A.