Quiz #3 Solutions

1. (a) Note that

an

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}2x_1 + x_2\\1\end{bmatrix} + \begin{bmatrix}-x_1\\x_2 - 1\end{bmatrix} = \begin{bmatrix}x_1 + x_2\\x_2\end{bmatrix}$$

This is linear by definition, since

$$T\left(\begin{bmatrix}u_1\\u_2\end{bmatrix} + \begin{bmatrix}v_1\\v_2\end{bmatrix}\right) = T\left(\begin{bmatrix}u_1+v_1\\u_2+v_2\end{bmatrix}\right) = \begin{bmatrix}u_1+v_1+u_2+v_2\\u_2+v_2\end{bmatrix}$$

and
$$T\left(c\begin{bmatrix}u_1\\u_2\end{bmatrix}\right) = T\left(\begin{bmatrix}cu_1\\cu_2\end{bmatrix}\right) = \begin{bmatrix}cu_1+cu_2\\cu_2\end{bmatrix} = c\begin{bmatrix}u_1+u_2\\u_2\end{bmatrix} = cT\left(\begin{bmatrix}u_1\\u_2\end{bmatrix}\right)$$

(b) Since
$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix}$$

by Theorem 10, we have

$$T(\mathbf{x}) = \underbrace{\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}}_{\text{the standard matrix of } T} \mathbf{x}, \text{ for all } \mathbf{x} \in \mathbb{R}^2$$

(c)

where T(0,0) = (0,0), T(0,3) = (3,3), T(2,3) = (5,3), and T(2,0) = (2,0).

(d) T is a horizontal shear. It shift vectors horizontally an amount equal to their vertical height above the x_1 axis.

$$AB = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \\ 1 & 2 & 3 \end{bmatrix}$$

(b)

$$BA = \begin{bmatrix} 5 & 5\\ -5 & -5 \end{bmatrix}$$

(c)

$$ABC = (AB)C = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 7 & 8 \\ -6 & -14 & -16 \\ 3 & 7 & 8 \end{bmatrix}$$

(d)

$$(AB + 2I_3)C - AI_2BC - I_3C = ABC + 2I_3C - AI_2BC - I_3C$$
$$= ABC + 2C - ABC - C$$
$$= C = \begin{bmatrix} 1 & 2 & 3\\ 1 & 1 & 1\\ 0 & 1 & 1 \end{bmatrix}$$

3. If \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 span \mathbb{R}^3 , then by Theorem 4, the matrix

 $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$

has a pivot position in every row. That it, it has three pivot positions. Since it has three columns, it has a pivot position in every column. Therefore, the equation

 $A\mathbf{x} = \mathbf{0}$

has an augmented matrix $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{0} \end{bmatrix}$ with pivot positions in the first three columns. Therefore, it has only the trivial solution, and $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ is linearly independent.

Conversely, if $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ is linearly independent, then $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{0} \end{bmatrix}$ has pivot positions in the first three columns. Thus, it has pivot positions in all three rows, so by Theorem 4, the vectors \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 span \mathbb{R}^3 .

- 4. Write $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$. We are given that $\mathbf{a}_3 = \mathbf{a}_1 + \mathbf{a}_2$.
 - (a) They are linearly dependent by Theorem 7.
 - (b) Since

$$1\mathbf{a}_1 + 1\mathbf{a}_2 + (-1)\mathbf{a}_3 = \mathbf{0}$$

the equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution (1, 1, -1).

(c) By Theorem 6, the solution set of $A\mathbf{x} = \mathbf{b}$ is

$$\mathbf{x} = \mathbf{p} + \mathbf{v}_h$$

for **p** any solution of $A\mathbf{x} = \mathbf{b}$ and all \mathbf{v}_h that are solutions of $A\mathbf{x} = \mathbf{0}$. By (b), $A\mathbf{x} = \mathbf{0}$ has an infinite number of solutions, so $A\mathbf{x} = \mathbf{b}$ has an infinite number of solutions, too. **5.** (a)

$$\begin{bmatrix} 0 & (1) & 0 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{R2 \to R2 - R1} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

giving the general solution

$$\begin{cases} x_2 = 0\\ x_1 \text{ free} \end{cases}$$

Therefore, the parametric vector form of the solution set is

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad x_1 \text{ free}$$

(b) By Theorem 6, the solution set of $A\mathbf{x} = \begin{bmatrix} 2\\ 2 \end{bmatrix}$ can be written

$$\mathbf{x} = \underbrace{\begin{bmatrix} 1\\2 \end{bmatrix}}_{+} \underbrace{c_1 \begin{bmatrix} 1\\0 \end{bmatrix}}_{+} \underbrace{c_1 \in \mathbb{R}}_{-},$$

a specific solution

all solutions of the homogeneous system

(c)

The solution set in (b) is parallel to that in (a) but shifted by the vector $\mathbf{p} = (1, 2)$.

(d) Note that T(-2, -1) = (-1, -1), T(0, 1) = (1, 1), T(1, 0) = (0, 0), T(-1, 2) = (2, 2), and T(4, 2) = (2, 2). Plotting these sample points:

we see that T projects each point horizontally onto the line $x_1 = x_2$.

(e) T is not one-to-one: observe that the points (-1, 2) and (4, 2) are both transformed to (2, 2).

T is not onto \mathbb{R}^2 : observe that all the images lie on the line $x_1 = x_2$. In particular, no vector has image (1,0) under T.

(f) If \mathbf{x} is a point in the solution set of $A\mathbf{x} = \mathbf{0}$, then

$$T(\mathbf{x}) = A\mathbf{x} = \mathbf{0}$$

so all such images are equal to **0**. The image of the whole solution set is the set $\{\mathbf{0}\}$. Similarly, the image of the solution set of $A\mathbf{x} = \begin{bmatrix} 2\\ 2 \end{bmatrix}$ is the single point $\left\{ \begin{bmatrix} 2\\ 2 \end{bmatrix} \right\}$. For any **b**, if $A\mathbf{x} = \mathbf{b}$ is consistent, then the image of its solution set will be $\{\mathbf{b}\}$.