
Math 221 (101) Matrix Algebra November 12, 2002

Midterm #2 Solutions

1. (a) Augmenting with the identity matrix and reducing:

1 1 2 0 1 0 0 0

0 1 0 0 0 1 0 0

1 2 3 0 0 0 1 0

0 0 0 1 0 0 0 1

R3→R3−R1

1 1 2 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 1 0 −1 0 1 0

0 0 0 1 0 0 0 1

R3→R3−R2

1 1 2 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 −1 −1 1 0

0 0 0 1 0 0 0 1

R1→R1−2R3

1 1 0 0 3 2 −2 0

0 1 0 0 0 1 0 0

0 0 1 0 −1 −1 1 0

0 0 0 1 0 0 0 1

R1→R1−R2

1 0 0 0 3 1 −2 0

0 1 0 0 0 1 0 0

0 0 1 0 −1 −1 1 0

0 0 0 1 0 0 0 1

This gives the answer

A−1 =









3 1 −2 0
0 1 0 0

−1 −1 1 0
0 0 0 1








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(b) The unique solution is given by

p = A−1









1
0
1
0









=









3 1 −2 0
0 1 0 0

−1 −1 1 0
0 0 0 1

















1
0
1
0









=









1
0
0
0









2. (a) Since A is a triangular matrix, its determinant is the product of the elements along the
main diagonal

det A = (−1)(2)(−2)(−1) = −4

The determinant of B can be calculated by a cofactor expansion down the first column

det B = 0 − 0 + 4

∣

∣

∣

∣

∣

∣

1 2 −1
1 −1 2
3 5 −3

∣

∣

∣

∣

∣

∣

− 0 (1)

The determinant of the submatrix can be calculated by a cofactor expansion or by
the row reduction method. Both take about the same amount of work. A cofactor
expansion across the first row gives

∣

∣

∣

∣

∣

∣

1 2 −1
1 −1 2
3 5 −3

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

−1 2
5 −3

∣

∣

∣

∣

− 2

∣

∣

∣

∣

1 2
3 −3

∣

∣

∣

∣

+ (−1)

∣

∣

∣

∣

1 −1
3 5

∣

∣

∣

∣

= (3 − 10) − 2(−3 − 6) − (5 − (−3)) = −7 + 18 − 8 = 3

Alternatively, the row reduction method gives

1 2 −1

1 −1 2

3 5 −3

R2→R2−R1

1 2 −1

0 −3 3

3 5 −3

R3→R3−3R1

1 2 −1

0 −3 3

0 −1 0

R3→R3−
1

3
R2

1 2 −1

0 −3 3

0 0 −1

The determinant of the echelon form is (1)(−3)(−1) = 3, and since the reduction
involved only row replacement operations (which don’t change the determinant), this
gives the same answer 3.

In any event, once the determinant of the submatrix is known, the determinant of the
original matrix B may be calculated from (1) as

det B = 4(3) = 12
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(b) i. det(AB) = (det A)(det B) = (−4)(12) = −48

ii. det(2A) = 24 det A = 16(−4) = −64

iii. det(A3) = (det A)3 = (−4)3 = −64

iv. det(ABA−1) = (det A)(det B)
(

1

det A

)

= det B = 12

v. det(AT A) = (det AT )(det A) = (det A)(det A) = (−4)(−4) = 16

(c) The transformation from B to U involves 3 row replacements (which don’t affect the
determinant), 2 row interchanges (which change the sign of the determinant twice,
resulting in no net change), and a row scaling by − 1

3
which scales the determinant by

the same amount. Therefore, the determinant of B is, in all, simply scaled by − 1

3
,

giving:

det U = −
1

3
det B = −

1

3
(12) = −4

3. (a) We must find the pivot columns of A. Reducing to echelon form,

0 1 −1 2 0 1

0 1 −1 2 1 2

0 0 0 0 1 1

1 2 −1 0 1 4

R1↔R4

1 2 −1 0 1 4

0 1 −1 2 1 2

0 0 0 0 1 1

0 1 −1 2 0 1

R4→R4−R2

1 2 −1 0 1 4

0 1 −1 2 1 2

0 0 0 0 1 1

0 0 0 0 −1 −1

R4→R4+R3

1 2 −1 0 1 4

0 1 −1 2 1 2

0 0 0 0 1 1

0 0 0 0 0 0

The echelon form shows the pivot positions of the original matrix are in its first, second,
and fifth columns:

A =

0 1 −1 2 0 1

0 1 −1 2 1 2

0 0 0 0 1 1

1 2 −1 0 1 4

so these columns form a basis for ColA:






















0
0
0
1









,









1
1
0
2









,









0
1
1
1






















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(b) To find a basis for Nul A, we augment the matrix with a zero vector, and continue the
reduction to reduced echelon form:

1 2 −1 0 1 4 0

0 1 −1 2 1 2 0

0 0 0 0 1 1 0

0 0 0 0 0 0 0

R1→R1−R3

1 2 −1 0 0 3 0

0 1 −1 2 1 2 0

0 0 0 0 1 1 0

0 0 0 0 0 0 0

R2→R2−R3

1 2 −1 0 0 3 0

0 1 −1 2 0 1 0

0 0 0 0 1 1 0

0 0 0 0 0 0 0

R1→R1−2R2

1 0 1 −4 0 1 0

0 1 −1 2 0 1 0

0 0 0 0 1 1 0

0 0 0 0 0 0 0

This gives a general solution of



















x1 = −x3 + 4x4 − x6

x2 = x3 − 2x4 − x6

x5 = −x6

x3, x4, x6 free

and a parametric vector form of

x =

















x1

x2

x3

x4

x5

x6

















=

















−x3 + 4x4 − x6

x3 − 2x4 − x6

x3

x4

−x6

x6

















= x3

















−1
1
1
0
0
0

















+ x4

















4
−2

0
1
0
0

















+ x6

















−1
−1

0
0

−1
1

















, x3, x4, x6 free

giving a basis for Nul A of














































−1
1
1
0
0
0

















,

















4
−2

0
1
0
0

















,

















−1
−1

0
0

−1
1















































4. (a) Because this is a triangular matrix, its eigenvalues are the elements along the main
diagonal. This gives two distinct eigenvalues 2 and 1.
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(b) For λ = 2, we calculate a basis for Nul(A − 2I). The coefficient matrix is

A − 2I =





2 2 −1
0 1 0
0 0 1



 − 2





2 0 0
0 2 0
0 0 2



 =





0 2 −1
0 −1 0
0 0 −1





and we reduce the augmented matrix as follows

0 2 −1

0 −1 0

0 0 −1

R2→R2+
1

2
R1

0 2 −1

0 0 − 1

2

0 0 −1

R3→R3−2R2

0 2 −1

0 0 − 1

2

0 0 0

R2→−2R2

0 2 −1

0 0 1

0 0 0

R1→R1+R2

0 2 0

0 0 1

0 0 0

R1→
1

2
R1

0 1 0

0 0 1

0 0 0

This gives general solution










x2 = 0

x3 = 0

x1 free

with corresponding vector parametric form

x =





x1

x2

x3



 =





x1

0
0



 = x1





1
0
0



 , x1 free

giving a basis for the eigenspace (associated with λ = 2) of










1
0
0











For λ = 1, we calculate a basis for Nul(A − I). The coefficient matrix is

A − 2I =





2 2 −1
0 1 0
0 0 1



 − 2





1 0 0
0 1 0
0 0 1



 =





1 2 −1
0 0 0
0 0 0





and the augmented matrix is already in reduced echelon form




1 2 −1 0
0 0 0 0
0 0 0 0




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This gives general solution
{

x1 = −2x2 + x3

x2, x3 free

with corresponding vector parametric form

x =





x1

x2

x3



 =





−2x2 + x3

x2

x3



 = x2





−2
1
0



 + x3





1
0
1



 , x2, x3 free

giving a basis for the eigenspace (associated with λ = 1) of











−2
1
0



 ,





1
0
1











(c) By the Diagonalization Theorem, we put the eigenvectors from the calculated bases
into P :

P =





1 −2 1
0 1 0
0 0 1





and the eigenvalues in the same order into D:

D =





2 0 0
0 1 0
0 0 1





Alternatively, we could build P in a different order, as long as D also reflected the
change. For example,

P =





−2 1 1
1 0 0
0 1 0





and

D =





1 0 0
0 1 0
0 0 2





will work, too.

5. Since {b1,b2,b3} is a basis for R
3, the vectors are linearly independent. Therefore, the

square matrix
B =

[

b1 b2 b3

]

is invertible by the Invertible Matrix Theorem. Since A is invertible by assumption, it follows
from the result given in the hint that

AB =
[

Ab1 Ab2 Ab3

]

is invertible.
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However, by the Invertible Matrix Theorem, this implies that the columns of AB span R
3

and are linearly independent. Therefore,

{Ab1, Ab2, Ab3}

is a basis for R
3 by definition.
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