What You Need to Know

• Definitions

e.g., linear independence, basis, null space

• Concepts (including Theorems)

e.g., A basis is (by definition) a linearly independent spanning set. Related concepts:

- Spanning Set Theorem
- Basis Theorem
- Calculating a basis for Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is same as calculating a basis for Col $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$.
- Algorithms

e.g.,

- Find a basis for $\operatorname{Col} A$
- Orthogonalize a set
- Normalize a vector
- Orthogonally diagonalize a symmetric matrix

Advice on Definitions

1. concentrate on important ones

What's important? Well, I've mentioned "basis" and "eigenvector" about a million times each. Look in the index, too.

2. memorize the concept, not the wording

Advice on Concepts

- 1. geometric interpretation can help (but don't get obsessed with it)
- 2. look at "theory questions" on quizzes and in homework
- 3. try to make new connections

e.g., rank equals number of pivot positions, so if rank equals number of rows of $m \times n$ matrix, then its columns span all of \mathbb{R}^m , so $\text{Col } A = \mathbb{R}^m$.

Advice on Algorithms

Look at the quizzes (and homework):

Quiz	Al	gorithms
1	_	solve linear system
	_	is $\mathbf{w} \in \text{Span}\{\mathbf{u}, \mathbf{v}\}$?
2	_	solve homogeneous
	_	use to solve nonhomogeneous
	_	is set linearly independent?
3	_	find standard matrix
4	_	invert 2×2
	_	determinant by cofactor expansion
	_	inverse using $\begin{bmatrix} A & I \end{bmatrix}$
5	—	get inverse/determinant with EROs
6	_	find basis for Col A , Nul A
7	_	determinant of triangular matrix
	_	find eigenspace basis
	_	diagonalize 2×2
8	_	project v onto Col A
9	_	find $(\operatorname{Col} A)^{\perp}$
	_	find least-squares solutions
	_	perform QR factorization
	—	orthogonally diagonalize matrix