
Math 221 (101) Matrix Algebra November 29, 2002

Homework Set #12 Solutions

Exercises 6.5 (p. 411)

Assignment: Do #17, 18, 3, 5, 7

17. (a) True. (p. 404)

(b) True. (p. 405)

(c) False. It should read ‖b − Ax‖ ≥ ‖b − Ax̂‖.
(d) True. (Theorem 6.13, p. 406)

(e) True. (Theorem 6.14, p. 408)

18. (a) True. (p. 404)

(b) False. Instead, it is the vector x such that Ax is the point in the column space closest
to b.

(c) True. This just says that Ax is the orthogonal projection of b onto ColA.

(d) False. This is true only if AT A is invertible.

(e) False, in the sense that some “ill-conditioned” matrices will cause problems. See page 409.

(f) True, perhaps, if you’re a computer. False, if you’re human. Humans are better off
using the normal equations.

3. We have

AT A =

[

1 −1 0 2
−2 2 3 5

]









1 −2
−1 2

0 3
2 5









=

[

6 6
6 42

]

ATb =

[

1 −1 0 2
−2 2 3 5

]









3
1

−4
2









=

[

6
−6

]

so we must solve the system of normal equations

AT Ax̂ = ATb
[

6 6
6 42

]

x̂ =

[

6
−6

]

A few row operations give

[

6 6 6
6 42 −6

]

R1→
1

6
R1

R2→
1

6
R2

[

1 1 1
1 7 −1

]

R2→R2−R1

[

1 1 1
0 6 −2

]
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R2→
1

6
R2

[

1 1 1
0 1 −1/3

]

R1→R1−R2

[

1 0 4/3
0 1 −1/3

]

giving the unique least-squares solution

x̂ =

[

4/3
−1/3

]

5. We have

AT A =





1 1 1 1
1 1 0 0
0 0 1 1













1 1 0
1 1 0
1 0 1
1 0 1









=





4 2 2
2 2 0
2 0 2



 ATb =





1 1 1 1
1 1 0 0
0 0 1 1













1
3
8
2









=





14
4

10





giving the normal equations




4 2 2
2 2 0
2 0 2



 x̂ =





14
4

10





which have solution




4 2 2 14
2 2 0 4
2 0 2 10





R1→
1

2
R1





2 1 1 7
2 2 0 4
2 0 2 10





R2→R2−R1
R3→R3−R1





2 1 1 7
0 1 −1 −3
0 −1 1 3





R1→R1−R2
R3→R3+R2





2 0 2 10
0 1 −1 −3
0 0 0 0





R1→
1

2
R1





1 0 1 5
0 1 −1 −3
0 0 0 0





giving general solution










x1 = 5 − x3

x2 = −3 + x3

x3 free

This gives the set of all least-squares solutions.

7. The least-squares error is the distance:

‖b − Ax̂‖ =

∥

∥

∥

∥

∥

∥

∥

∥









3
1

−4
2









−









1 −2
−1 2

0 3
2 5









[

4/3
−1/3

]

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥









3
1

−4
2









−









2
−2
−1

1









∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥









1
3

−3
1









∣

∣

∣

∣

∣

∣

∣

∣

=
√

20

2
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Exercises 7.1 (p. 448)

Assignment: Do #25, 26, 1–6, 13, 17, 23, 27, 28, 30, 34

25. (a) True. (Theorem 7.2, p. 445)

(b) True. The vectors are from distinct eigenspaces, so they are orthogonal by Theorem 7.1.

(c) False. It has n real eigenvalues counting multiplicities, but it may not have n distinct
eigenvalues. (We did an example in class of a 3 × 3 symmetric matrix with only two
distinct eigenvalues.)

(d) True. (p. 447) It projects any vector onto the subspace spanned by v.

26. (a) True. (Theorem 7.2, p. 445)

(b) True. By definition, B is orthogonally diagonalizable. Therefore, it is symmetric by
Theorem 7.2.

(c) False. Orthogonal matrices need not be symmetric, and only symmetric matrices are
orthogonally diagonalizable.

(d) True. (Theorem 7.3, p. 446)

1–6. Only the matrices in problems 1 and 4 are symmetric.

13. Finding the eigenvalues,

det(A − λI) = (3 − λ)2 − 1 = λ2 − 6λ + 8 = (λ − 4)(λ − 2)

giving eigenvalues λ = 2, 4.

For λ = 2, the eigenspace is given by the solution set associated with the augmented matrix:

[

1 1 0
1 1 0

]

R2→R2−R1

[

1 1 0
0 0 0

]

which has general solution
{

x1 = −x2

x2 free

and parametric vector form

x =

[

x1

x2

]

=

[

−x2

x2

]

= x2

[

−1
1

]

, x2 free

The basis for the eigenspace is
{[

−1
1

]}

3
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For λ = 4, the eigenspace is given by

[

−1 1 0
1 −1 0

]

R2→R2+R1

[

−1 1 0
0 0 0

]

R1→−R1

[

1 −1 0
0 0 0

]

which has general solution
{

x1 = x2

x2 free

and parametric vector form

x =

[

x1

x2

]

=

[

x2

x2

]

= x2

[

1
1

]

, x2 free

The basis for the eigenspace is
{[

1
1

]}

There are no eigenbases with more than one vector, so there’s no need to orthogonalize
anything.

We need only normalize the vectors:

(λ = 2)
1

∥

∥

∥

∥

[

−1
1

]∥

∥

∥

∥

[

−1
1

]

=
1

√

(−1)2 + 12

[

−1
1

]

=
1√
2

[

−1
1

]

=

[

−1/
√

2

1/
√

2

]

(λ = 4)
1

∥

∥

∥

∥

[

1
1

]∥

∥

∥

∥

[

1
1

]

=
1√
2

[

1
1

]

=

[

1/
√

2

1/
√

2

]

Put this orthonormal set in the columns of P and the corresponding eigenvalues along the
main diagonal of D to get:

P =

[

−1/
√

2 1/
√

2

1/
√

2 1/
√

2

]

D =

[

2 0
0 4

]

17. The eigenvalues are given in the problem: 5, 2, and −2.

For λ = 5, the eigenspace has basis given by





−4 1 3 0
1 −2 1 0
3 1 −4 0





R1↔R2





1 −2 1 0
−4 1 3 0

3 1 −4 0





R2→R2+4R1
R3→R3−3R1





1 −2 1 0
0 −7 7 0
0 7 −7 0
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R2→−

1

7
R2





1 −2 1 0
0 1 −1 0
0 7 −7 0





R1→R1+2R2
R3→R3−7R2





1 0 −1 0
0 1 −1 0
0 0 0 0





giving general solution










x1 = x3

x2 = x3

x3 free

and parametric vector form

x =





x1

x2

x3



 =





x3

x3

x3



 = x3





1
1
1



 , x3 free

So, the basis is:










1
1
1











For λ = 2, the eigenspace has basis given by




−1 1 3 0
1 1 1 0
3 1 −1 0





R2→R2+R1
R3→R3+3R1





−1 1 3 0
0 2 4 0
0 4 8 0





R2→
1

2
R2





−1 1 3 0
0 1 2 0
0 4 8 0





R1→R1−R2
R3→R3−4R2





−1 0 1 0
0 1 2 0
0 0 0 0





R1→−R1





1 0 −1 0
0 1 2 0
0 0 0 0





giving general solution










x1 = x3

x2 = −2x3

x3 free

and parametric vector form

x =





x1

x2

x3



 =





x3

−2x3

x3



 = x3





1
−2

1



 , x3 free

So, the basis is:










1
−2

1
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For λ = −2, the eigenspace has basis given by




3 1 3 0
1 5 1 0
3 1 3 0





R1↔R2





1 5 1 0
3 1 3 0
3 1 3 0





R3→R3−R2





1 5 1 0
3 1 3 0
0 0 0 0





R2→R2−3R1





1 5 1 0
0 −14 0 0
0 0 0 0





R2→−

1

14
R2





1 5 1 0
0 1 0 0
0 0 0 0





R1→R1−5R2





1 0 1 0
0 1 0 0
0 0 0 0





giving general solution










x1 = −x3

x2 = 0

x3 free

and parametric vector form

x =





x1

x2

x3



 =





−x3

0
x3



 = x3





−1
0
1



 , x3 free

So, the basis is:










−1
0
1











Again, none of the bases contains more than one vector, so there is no need to orthogonalize
any vectors.

Normalizing the vectors, we get

(λ = 5)
1

∥

∥

∥

∥

∥

∥





1
1
1





∥

∥

∥

∥

∥

∥





1
1
1



 =
1√
3





1
1
1



 =





1/
√

3

1/
√

3

1/
√

3





(λ = 2)
1

∥

∥

∥

∥

∥

∥





1
−2

1





∥

∥

∥

∥

∥

∥





1
−2

1



 =
1√
6





1
−2

1



 =





1/
√

6

−2/
√

6

1/
√

6





(λ = −2)
1

∥

∥

∥

∥

∥

∥





−1
0
1





∥

∥

∥

∥

∥

∥





−1
0
1



 =
1√
2





−1
0
1



 =





−1/
√

2
0

1/
√

2
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giving matrices:

P =





1/
√

3 1/
√

6 −1/
√

2

1/
√

3 −2/
√

6 0/
√

2

1/
√

3 1/
√

6 1/
√

2



 D =





5 0 0
0 2 0
0 0 −2





23. First, we will verify that 5 is an eigenvalue. We could calculate det(A − 5I) and show that
it is zero. However, we are going to need to find a basis for the eigenspace associated with
λ = 5 anyway, so we might as well solve the homogeneous system (A − 5I)x = 0 and show
that it has nontrivial solutions:





−2 1 1 0
1 −2 1 0
1 1 −2 0





...





1 0 −1 0
0 1 −1 0
0 0 0 0





giving










x1 = x3

x2 = x3

x3 free

and

x =





x1

x2

x3



 = x3





1
1
1



 , x3 free

so the basis is










1
1
1











This shows that 5 is an eigenvalue.

Now, we will show that v is an eigenvector:

Av =





3 1 1
1 3 1
1 1 3









−1
1
0



 =





−2
2
0



 = 2





−1
1
0



 = 2v

so it an eigenvector for eigenvalue 2. To get a basis for the eigenspace associated with λ = 2,
we solve the following system:





1 1 1 0
1 1 1 0
1 1 1 0





R2→R2−R1
R3→R3−R1





1 1 1 0
0 0 0 0
0 0 0 0
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giving
{

x1 = −x2 − x3

x2, x3 free

and

x =





x1

x2

x3



 = x2





−1
1
0



 + x3





−1
0
1



 , x2, x3 free

so the basis is










−1
1
0



 ,





−1
0
1











Observe that we now have our three (linearly independent) eigenvectors, so there are no more
eigenvalues or eigenbases to find.

However, the second basis contains two vectors and must be orthogonalized using Gram-
Schmidt. This gives

v1 =





−1
1
0





v2 =





−1
0
1



 −





−1
0
1



 · v1

v1 · v1

v1 =





−1
0
1



 −





−1
0
1



 ·





−1
1
0









−1
1
0



 ·





−1
1
0









−1
1
0



 =





−1
0
1



 − 1

2





−1
1
0



 =





−1/2
−1/2

1





Our collection of three orthogonal vectors is now:











1
1
1



 ,





−1
1
0



 ,





−1/2
−1/2

1











associated with eigenvalues 5, 2, and 2 respectively.

Normalizing the vectors gives:











1/
√

3

1/
√

3

1/
√

3



 ,





−1/
√

2

1/
√

2
0



 ,





−1/
√

6

−1/
√

6

2/
√

6
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The final matrices giving A = PDP−1 are

P =





1/
√

3 −1/
√

2 −1/
√

6

1/
√

3 1/
√

2 −1/
√

6

1/
√

3 0 2/
√

6



 D =





5 0 0
0 2 0
0 0 2





(with P−1 = P T ).

27. (a) (BT AB)T = BT AT (BT )T = BTAT B = BT AB;

(b) (BT B)T = BT (BT )T = BT B;

(c) (BBT )T = (BT )T BT = BBT .

28. (Ax) · y = (Ax)Ty = xT ATy = xT Ay = x · (Ay)

30. By Theorem 7.2, A and B are symmetric. It is enough to show that this implies AB is
symmetric: then, another application of Theorem 7.2 will show that AB is orthogonally
diagonalizable. To show that AB is symmetric:

(AB)T = BTAT = BA = AB

(where the second last equality follows from A and B being symmetric and the last equality
was given in the problem).

34.

A = λ1u1u
T

1 + λ2u2u
T

2 + λ3u3u
T

3

= 7





1/
√

2
0

1/
√

2





[

1/
√

2 0 1/
√

2
]

+ 7





−1/
√

18

4/
√

18

1/
√

18





[

−1/
√

18 4/
√

18 1/
√

18
]

− 2





−2/3
−1/3

2/3





[

−2/3 −1/3 2/3
]

= 7





1/2 0 1/2
0 0 0

1/2 0 1/2



 + 7





1/18 −4/18 −1/18
−4/18 16/18 4/18
−1/18 4/18 1/18



 − 2





4/9 2/9 −4/9
2/9 1/9 −2/9

−4/9 −2/9 4/9





Exercises 7.2 (p. 457)

Assignment: Do #21, 22, 1, 3, 7, 25

21. (a) True. (p. 450)

9
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(b) True.

(c) True. By the discussion preceding Theorem 7.4, the symmetric matrix A can be or-
thogonally diagonalized A = PDP−1, and the columns of P (which are orthonormal
eigenvectors of A) are the principal axes.

(d) False. It satisfies Q(x) > 0 for all x 6= 0, but of course Q(0) = 0 for all quadratic forms.

(e) True. (Theorem 7.5, p. 456)

(f) True. (p. 457)

22. (a) True. (p. 450)

(b) False. It doesn’t work for any orthogonal matrix P only those that arise in orthogonal
diagonalizations of A.

(c) False. Depending on A and c, it can also be empty, a point, a line, or two lines.

(d) False. It’s one that takes on both positive and negative values.

(e) True. (Theorem 7.5, p. 456)

1. (a)

Q(x) = xT Ax =
[

x1 x2

]

[

5 1/3
1/3 1

] [

x1

x2

]

=
[

5x1 + 1

3
x2

1

3
x1 + x2

]

[

x1

x2

]

= 5x2
1 + 2

3
x1x2 + x2

2

Alternatively, we could have just observed that the diagonal elements 5 and 1 contribute
5x2

1 + x2
2 to the sum while the off-diagonal element gets doubled to produce (2/3)x1x2.

(b) Q

([

6
1

])

= 5(6)2 + 2

3
(6)(1) + (1)2 = 180 + 4 + 1 = 185

(c) Q

([

1
3

])

= 5(1)2 + 2

3
(1)(3) + (3)2 = 5 + 2 + 9 = 16

3. (a) The diagonal elements are given by the coefficients on the terms 10x2
1 and −3x2

2. The
off-diagonal element is half the coefficient on the cross-product term −6x1x2, so we have

A =

[

10 −3
−3 −3

]

(b) The diagonal elements are given by 5x2
1 +0x2

2 and the off-diagonal element is half of the
coefficient of 3x1x2:

A =

[

5 3/2
3/2 0

]

10
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7. The matrix A is given by

A =

[

1 5
5 1

]

We need an orthogonal diagonalization (to calculate P ). The characteristic polynomial

det(A − λI) = (1 − λ)2 − 25 = λ2 − 2λ − 24 = (λ − 6)(λ + 4)

gives eigenvalues −4 and 6. For λ = −4, the usual computation gives an eigenbasis

{[

−1
1

]}

.

For λ = 6, we get an eigenbasis

{[

1
1

]}

. These are orthogonal but not normal. Normalizing,

we get the columns of matrix P , and the matrices P and D are:

P =

[

−1/
√

2 1/
√

2

1/
√

2 1/
√

2

]

D =

[

−4 0
0 6

]

By the Principal Axis Theorem (and the discussion preceding it), P is the change-of-variable
matrix such that the change of variables x = Py gives the new quadratic form

yT Dy = −4y2
1 + 6y2

2

with no cross-product term.

25. (a) We must show that xT (BTB)x ≥ 0 for all x. However, we see that

xT (BT B)x = (xT BT )(Bx) = (Bx)T (Bx) = (Bx) · (Bx)

and this last expression is ≥ 0 by the properties of inner products. (In fact, it equals ‖Bx‖2.)

(b) If, in addition, B is n × n and invertible, then, as above

xT (BT B)x = ‖Bx‖2 ≥ 0

However, the only way this squared length can equal zero is if Bx = 0 (by the properties
of length). Since B is invertible, the only solution of this homogenous equation is x = 0.
Therefore, for all non-zero vectors x, Bx is nonzero, so the squared-length is > 0.
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