
Math 221 (101) Matrix Algebra November 22, 2002

Homework Set #11 Solutions

Corrections: (Dec. 11) 6.3 #7

Exercises 5.4 (p. 327)

Assignment: Do #2, 4, 8, 12, 16, 20, 22

2. This matrix is
M =

[
[T (d1)]B [T (d2)]B

]

The first column is the coefficient vector of T (d1) with respect to basis B, but since

T (d1) = 2b1 − 3b2

this vector is simply

[
2

−3

]

. Similarly, the second column is

[
−4

5

]

, so the matrix is

M =

[
2 −4

−3 5

]

4. The terminology is a bit confusing here: the desired matrix is the matrix for T relative to
B and E where B is the given basis for V and E is the standard basis for R

2. Therefore, we
want

M =
[
[T (b1)]E [T (b2)]E [T (b3)]E

]

To calculate the first column, we see that

T (b1) = T (1b1 + 0b2 + 0b3) =

[
2(1) − 4(0) + 5(0)

−(0) + 3(0)

]

=

[
2
0

]

The first column of M is the coordinate vector of this vector with respect to the standard
basis E. However, the coordinate vector of any vector with respect to the standard basis is

itself (see Example 2 on page 241), so the first column of M is

[
2
0

]

.

Similarly, the second column is

[T (b2)]E = T (b2) = T (0b1 + 1b2 + 0b3) =

[
2(0) − 4(1) + 5(0)

−(1) + 3(0)

]

=

[
−4
−1

]
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and the third column is

[T (b3)]E = T (b3) = T (0b1 + 0b2 + 1b3) =

[
2(0) − 4(0) + 5(1)

−(0) + 3(1)

]

=

[
5
3

]

so

M =

[
2 −4 5
0 −1 3

]

8. We know that for any v ∈ V , we have

[T (v)]B = [T ]B[v]B

However

[3b1 − 4b2]B =





3
−4

0





so we can calculate

[T (v)]B =





0 −6 1
0 5 −1
1 −2 7









3
−4

0



 =





24
−20

11





which implies
T (v) = 24b1 − 20b2 + 11b3

12. We must find
[T ]B =

[
[T (b1)]B [T (b2)]B

]
=
[
[Ab1]B [Ab2]B

]

For the first column,

Ab1 =

[
−1 4
−2 3

] [
3
2

]

=

[
5
0

]

To express it in B-coordinates, we must find weights such that

[
5
0

]

= x1b1 +x2b2 = x1

[
3
2

]

+

x2

[
−1

1

]

. In other words, we must solve the equation

[
3 −1
2 1

]

x =

[
5
0

]

The usual method yields the unique solution

[
1

−2

]

.
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For the second column,

Ab1 =

[
−1 4
−2 3

] [
−1

1

]

=

[
5
5

]

and solving the equation
[
3 −1
2 1

]

x =

[
5
5

]

gives the unique solution

[
2
1

]

. Thus, the matrix is

M =

[
1 2

−2 1

]

16. We must diagonalize A. Its characteristic equation is

(2 − λ)(3 − λ) − 6 = λ2 − 5λ = λ(λ − 5) = 0

yields the eigenvalues 0 and 5. The usual method gives a basis for the null space of A − 0I,

namely

{[
3
1

]}

, and a basis for the null space of A − 5λ, namely

{[
2

−1

]}

. This gives a

diagonalization A = PDP−1 with

P =

[
3 2
1 −1

]

D =

[
0 0
0 5

]

By Theorem 5.8, the basis

B =

{[
3
1

]

,

[
2

−1

]}

satisfies [T ]B = D, a diagonal matrix.

20. By definition, A and B similar implies there exists an invertible P such that A = PBP −1.
Therefore,

A2 = (PBP−1)(PBP−1) = PB(P−1P )BP−1 = PBBP−1 = PB2P−1

and so, by definition, A2 is similar to B2.

22. By definition, A diagonalizable implies there exists an invertible P and a diagonal D such
that A = PDP−1. If A and B are similar, then there exists an invertible matrix, say Q, such
that B = QAQ−1. But, then,

B = QAQ−1 = QPDP−1Q−1

Since P and Q invertible implies QP invertible with (QP )−1 = P−1Q−1, there exists an
invertible matrix (specifically R = QP ) such that B = RDR−1. That is, by definition, B is
diagonalizable.
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Exercises 6.1 (p. 376)

Assignment: Do #19, 20, 1, 5, 8, 12, 13, 26

19. (a) True. (p. 370)

(b) True. (Theorem 5.1, p. 370)

(c) True. (p. 373)

(d) False. For any matrix, Col A and NulAT are orthogonal, but we don’t have ColA and
NulA orthogonal in general, even if A is square. For example, the matrix A = [ 1 0

1 0
]

has (1, 1) in its column space and (0, 1) in its null space, and these vectors are not
orthogonal.

(e) True. (p. 374)

20. (a) True, since u · v = v · u.

(b) False. Instead, ‖cv‖ = |c|‖v‖.
(c) True. (p. 374)

(d) True. (Theorem 5.2, p. 374)

(e) True. (Theorem 5.3, p. 375)

1. u · u = (−1)(−1) + 2(2) = 5 v · u = 4(−1) + 6(2) = 8
v · u
u · u =

8

5

5.
(u · v
v · v

)

v =

(
8

42 + 62

)

v =
8

52

[
4
6

]

=

[
8/13

12/13

]

8. ‖x‖ =
√

x · x =
√

62 + (−2)2 + 32 =
√

36 + 4 + 9 =
√

49 = 7

12. Normalizing the vector:

1
∥
∥
∥
∥

[
8/3
2

]∥
∥
∥
∥

[
8/3
2

]

=

(

1
√

64/9 + 4

)[
8/3
2

]

=

(

1
√

100/9

)[
8/3
2

]

=

(
1

10/3

)[
8/3
2

]

=
3

10

[
8/3
2

]

=

[
4/5
3/5

]

13.

dist

([
10
−3

]

,

[
−1
−5

])

=

∥
∥
∥
∥

[
10
−3

]

−
[
−1
−5

]∣
∣
∣
∣
=

∥
∥
∥
∥

[
11
2

]∥
∥
∥
∥

=
√

112 + 22 =
√

125 = 5
√

5

26. We can rewrite the equation u · x = 0 as the homogeneous matrix equation uTx = 0.
Therefore, by Theorem 4.2, the solution set of this equation (which is the set W ) is a subspace
of R

3. Since the dimension of the column space of the matrix uT is 1, by the Rank Theorem,
the dimension of the null space W is 2. A 2-dimensional subspace of R

3 is a plane through
the origin, so W is the plane through the origin perpendicular to u.
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Exercises 6.2 (p. 386)

Assignment: Do #23, 24, 1, 3, 9, 11, 15, 20

23. (a) True. Most linearly independent sets in R
n aren’t orthogonal sets.

(b) True. Theorem 6.5 can be used to calculate the weights.

(c) False. The normalized vectors are always orthogonal if the original vectors were.

(d) False. A square matrix with orthonormal columns is an orthogonal matrix.

(e) False. ‖y − ŷ‖ gives the distance from y to L.

24. (a) True. Orthogonal sets can contain the zero vector, and such a set is linearly dependent.

(b) False. Such a set is orthogonal, but the vectors must be unit length (must have ui ·ui = 1
for all i) in order to be orthonormal.

(c) True. (p. 385)

(d) True. (p. 381)

(e) True. (p. 385)

1. Since 



−1
4

−3



 ·





3
−4
−7



 = (−1)(3) + 4(−4) + (−3)(−7) = 2 6= 0

this set is not orthogonal.

3. Since 



−6
−3

9



 ·





3
1

−1



 = −6(3) + (−3)(1) + 9(−1) = −18 − 3 − 9 = −30 6= 0

this set is not orthogonal.

9. Since u1 · u2 = 1(−1) + 0(4) + 1(1) = 0, u1 · u3 = 1(2) + 0(1) + 1(−2) = 0, and u2 · u3 =
−1(2) + 4(1) + 1(−2) = 0, the set is orthogonal. Because it contains no zero vectors, it is
linearly independent, and a linearly independent set of 3 vectors in R

3 is a basis for R
3. We

can use Theorem 6.5 to write

x =
x · u1

u1 · u1

u1 +
x · u2

u2 · u2

u2 +
x · u3

u3 · u3

u3

5
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which gives

x =





8
−4
−3



 ·





1
0
1









1
0
1



 ·





1
0
1









1
0
1



+





8
−4
−3



 ·





−1
4
1









−1
4
1



 ·





−1
4
1









−1
4
1



+





8
−4
−3



 ·





2
1

−2









2
1

−2



 ·





2
1

−2









2
1

−2





=
5

2





1
0
1



+
−27

18





−1
4
1



+
18

9





2
1

−2



 =
5

2





1
0
1



− 3

2





−1
4
1



+ 2





2
1

−2





11. This is simply
[
1
7

]

·
[
−4

2

]

[
−4

2

]

·
[
−4

2

]

[
−4

2

]

=
10

20

[
−4

2

]

=

[
−2

1

]

15. This is the length of:

y − ŷ = y− y · u
u · uu =

[
3
1

]

−

[
3
1

]

·
[
8
6

]

[
8
6

]

·
[
8
6

]

[
8
6

]

=

[
3
1

]

− 30

100

[
8
6

]

=

[
3/5

−4/5

]

which is
‖y − ŷ‖ =

√

9/25 + 16/25 =
√

25/25 = 1

20. Note that this set is orthogonal. The length of the first vector is
√

(−2/3)2 + (1/3)2 + (2/3)2 =
√

4/9 + 1/9 + 4/9 =
√

9/9 = 1

so it is already a unit vector. The length of the second vector is
√

(1/3)2 + (2/3)2 =
√

1/9 + 4/9 =
√

5/9 =
√

5/3

Normalizing it gives

1√
5/3





1/3
2/3

0



 =
3√
5





1/3
2/3

0



 =





1/
√

5

2/
√

5
0





giving the orthonormal set










−2/3
1/3
2/3



 ,





1/
√

5

2/
√

5
0











6
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Exercises 6.3 (p. 395)

Assignment: Do #21, 22, 2, 3, 7, 11, 18, 19

21. (a) True. (p. 374)

(b) True. (Theorem 6.8, p. 390)

(c) False. (p. 391)

(d) True. (p. 392)

(e) True. (p. 394)

22. (a) True. Suppose v ∈ W . If v ∈ W⊥, then it is orthogonal to every vector in W . In
particular, it must be orthogonal to itself: v · v = 0. But this is only true for the zero
vector, so v = 0.

(b) True. (p. 390)

(c) True. (Theorem 6.8, p. 390)

(d) False. It’s given by proj Wy.

(e) False. Instead, UUTy = proj Wy for all y ∈ R
n and UT Ux = x for all x ∈ R

p.

2. These four nonzero, orthogonal vectors must form a basis for R
4, so by Theorem 6.5, we can

write
v =

v · u1

u1 · u1

u1 +
v · u2

u2 · u2

u2 +
v · u3

u3 · u3

u3 +
v · u4

u4 · u4

u4

︸ ︷︷ ︸

z

The first of these terms is easily calculated:







4
5

−3
3






·







1
2
1
1













1
2
1
1






·







1
2
1
1













1
2
1
1







=
14

7







1
2
1
1







=







2
4
2
2







It is unnecessary to calculate the sum z of the other three terms explicitly. Instead, we write:

z = v− v̂ =







4
5

−3
3






−







2
4
2
2







=







2
1

−5
1







7
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and 





4
5

−3
3







=







2
4
2
2







+







2
1

−5
1







is the desired sum.

3. By Theorem 6.8,

ŷ =
y · u1

u1 · u1

u1+
y · u2

u2 · u2

u2 =





−1
4
3



 ·





1
1
0









1
1
0



 ·





1
1
0









1
1
0



+





−1
4
3



 ·





−1
1
0









−1
1
0



 ·





−1
1
0









−1
1
0



 =
3

2





1
1
0



+
5

2





−1
1
0



 =





−1
4
0





7. By Theorem 6.8,

ŷ =
y · u1

u1 · u1

u1 +
y · u2

u2 · u2

u2 =





1
3
5



 ·





1
3

−2









1
3

−2



 ·





1
3

−2









1
3

−2



+





1
3
5



 ·





5
1
4









5
1
4



 ·





5
1
4









5
1
4





=
0

14





1
3

−2



+
28

42





5
1
4



 =
2

3





5
1
4



 =





10/3
2/3
8/3





and

z = y− ŷ =





1
3
5



−





10/3
2/3
8/3



 =





−7/3
7/3
7/3





so the desired sum is

y =





10/3
2/3
8/3



+





−7/3
7/3
7/3





8
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11. By the Best Approximation Theorem, this is

ŷ =







3
1
5
1






·







3
1

−1
1













3
1

−1
1






·







3
1

−1
1













3
1

−1
1







+







3
1
5
1






·







1
−1

1
−1













1
−1

1
−1






·







1
−1

1
−1













1
−1

1
−1







=
6

12







3
1

−1
1







+
6

4







1
−1

1
−1







=







3
−1

1
−1







18. (a)

UT U =
[
1/
√

10 −3/
√

10
]
[

1/
√

10

−3/
√

10

]

=
[
1/10 + 9/10

]
=
[
1
]

UUT =

[
1/
√

10

−3/
√

10

]
[
1/
√

10 −3/
√

10
]

=

[
1/10 −3/10

−3/10 9/10

]

(b)

proj Wy =

[
7
9

]

·
[

1/
√

10

−3/
√

10

]

[
1/
√

10

−3/
√

10

]

·
[

1/
√

10

−3/
√

10

]

[
1/
√

10

−3/
√

10

]

=
−20/

√
10

1

[
1/
√

10

−3/
√

10

]

=

[
−2

6

]

(UUT )y =

[
1/10 −3/10

−3/10 9/10

] [
7
9

]

=

[
−20/10

60/10

]

=

[
−2

6

]

19. By Theorem 6.8, the projection of u3 onto Span{u1,u2} is

û3 =
u3 · u1

u1 · u1

u1 +
u3 · u2

u2 · u2

u2 =





0
0
1



 ·





1
1

−2









1
1

−2



 ·





1
1

−2









1
1

−2



+





0
0
1



 ·





5
−1

2









5
−1

2



 ·





5
−1

2









5
−1

2





=
−2

6





1
1

−2



+
2

30





5
−1

2



 =





0
−2/5

4/5





9
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and a vector orthogonal to this space is

z = u3 − û3 =





0
0
1



−





0
−2/5

4/5



 =





0
2/5
1/5





Exercises 6.4 (p. 402)

Assignment: Do #17, 18, 4, 5, 8, 11, 15

17. (a) False. If c = 0, the new set won’t be a basis.

(b) True. (p. 399)

(c) True. (p. 401)

18. (a) False. If {v1,v2,v3} is orthogonal and has no nonzero vectors, then it will form a basis
for W .

(b) True.

(c) True. (Theorem 6.12, p. 400)

4. By Gram-Schmidt, take

v1 =





3
−4

5





and take

v2 =





−3
14
−7



−





−3
14
−7



 ·





3
−4

5









3
−4

5



 ·





3
−4

5









3
−4

5



 =





−3
14
−7



− −100

50





3
−4

5



 =





−3
14
−7



+





6
−8
10



 =





3
6
3





Then {v1,v2} is an orthogonal basis.

5. Take

v1 =







1
−4

0
1







10
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and

v2 =







7
−7
−4

1






−







7
−7
−4

1






·







1
−4

0
1













1
−4

0
1






·







1
−4

0
1













1
−4

0
1







=







7
−7
−4

1






− 36

18







1
−4

0
1







=







5
1

−4
−1







and {v1,v2} is an orthogonal basis.

8. Normalizing the basis from problem 4 gives:

u1 =
1

‖v1‖
v1 =

1
√

32 + (−4)2 + 52





3
−4

5



 =
1√
50





3
−4

5



 =





3/
√

50

−4/
√

50

5/
√

50





and

u2 =
1

‖v2‖
v2 =

1√
32 + 62 + 32





3
6
3



 =
1√
54





3
6
3



 =





3/
√

54

6/
√

54

3/
√

54





11. Using Gram-Schmidt,

v1 =









1
−1
−1

1
1









and

v2 =









2
1
4

−4
2









−









2
1
4

−4
2









·









1
−1
−1

1
1

















1
−1
−1

1
1









·









1
−1
−1

1
1

















1
−1
−1

1
1









=









2
1
4

−4
2









− −5

5









1
−1
−1

1
1









=









3
0
3

−3
3









11
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and finally

v3 =









5
−4
−3

7
1









−









5
−4
−3

7
1









·









1
−1
−1

1
1

















1
−1
−1

1
1









·









1
−1
−1

1
1

















1
−1
−1

1
1









−









5
−4
−3

7
1









·









3
0
3

−3
3

















3
0
3

−3
3









·









3
0
3

−3
3

















3
0
3

−3
3









=









5
−4
−3

7
1









− 20

5









1
−1
−1

1
1









− −12

36









3
0
3

−3
3









=









5 − 4 + 1
−4 + 4 + 0
−3 + 4 + 1

7 − 4 − 1
1 − 4 + 1









=









2
0
2
2

−2









giving a basis














1
−1
−1

1
1









,









3
0
3

−3
3









,









2
0
2
2

−2















15. We must normalize the basis from problem 11 to produce an orthonormal basis for the
columns of Q. This lengths of the vectors are

√
5,

√
36 = 6, and

√
16 = 4 respectively, so our

orthonormal basis is: 













1/
√

5

−1/
√

5

−1/
√

5

1/
√

5

1/
√

5









,









1/2
0

1/2
−1/2

1/2









,









1/2
0

1/2
1/2

−1/2















giving a Q matrix of

Q =









1/
√

5 1/2 1/2

−1/
√

5 0 0

−1/
√

5 1/2 1/2

1/
√

5 −1/2 1/2

1/
√

5 1/2 −1/2









12
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and an R matrix of

R = QT A =





1/
√

5 −1/
√

5 −1/
√

5 1/
√

5 1/
√

5
1/2 0 1/2 −1/2 1/2
1/2 0 1/2 1/2 −1/2













1 2 5
−1 1 −4
−1 4 −3

1 −4 7
1 2 1









=





5/
√

5 −5/
√

5 20/
√

5
0 6 −2
0 0 4





giving the QR factorization.

13


