Homework Set \#11 Solutions

Corrections: (Dec. 11) 6.3 \#7

Exercises 5.4 (p. 327)

Assignment: Do \#2, 4, 8, 12, 16, 20, 22
2. This matrix is

$$
M=\left[\left[T\left(\mathbf{d}_{1}\right)\right]_{\mathfrak{B}} \quad\left[T\left(\mathbf{d}_{2}\right)\right]_{\mathfrak{B}}\right]
$$

The first column is the coefficient vector of $T\left(\mathbf{d}_{1}\right)$ with respect to basis \mathfrak{B}, but since

$$
T\left(\mathbf{d}_{1}\right)=2 \mathbf{b}_{1}-3 \mathbf{b}_{2}
$$

this vector is simply $\left[\begin{array}{r}2 \\ -3\end{array}\right]$. Similarly, the second column is $\left[\begin{array}{r}-4 \\ 5\end{array}\right]$, so the matrix is

$$
M=\left[\begin{array}{rr}
2 & -4 \\
-3 & 5
\end{array}\right]
$$

4. The terminology is a bit confusing here: the desired matrix is the matrix for T relative to \mathfrak{B} and \mathfrak{E} where \mathfrak{B} is the given basis for V and \mathfrak{E} is the standard basis for \mathbb{R}^{2}. Therefore, we want

$$
M=\left[\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathfrak{E}} \quad\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathfrak{E}} \quad\left[T\left(\mathbf{b}_{3}\right)\right]_{\mathfrak{E}}\right]
$$

To calculate the first column, we see that

$$
T\left(\mathbf{b}_{1}\right)=T\left(1 \mathbf{b}_{1}+0 \mathbf{b}_{2}+0 \mathbf{b}_{3}\right)=\left[\begin{array}{r}
2(1)-4(0)+5(0) \\
-(0)+3(0)
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

The first column of M is the coordinate vector of this vector with respect to the standard basis \mathfrak{E}. However, the coordinate vector of any vector with respect to the standard basis is itself (see Example 2 on page 241), so the first column of M is $\left[\begin{array}{l}2 \\ 0\end{array}\right]$.
Similarly, the second column is

$$
\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathfrak{E}}=T\left(\mathbf{b}_{2}\right)=T\left(0 \mathbf{b}_{1}+1 \mathbf{b}_{2}+0 \mathbf{b}_{3}\right)=\left[\begin{array}{r}
2(0)-4(1)+5(0) \\
-(1)+3(0)
\end{array}\right]=\left[\begin{array}{l}
-4 \\
-1
\end{array}\right]
$$

and the third column is

$$
\left[T\left(\mathbf{b}_{3}\right)\right]_{\mathfrak{E}}=T\left(\mathbf{b}_{3}\right)=T\left(0 \mathbf{b}_{1}+0 \mathbf{b}_{2}+1 \mathbf{b}_{3}\right)=\left[\begin{array}{r}
2(0)-4(0)+5(1) \\
-(0)+3(1)
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right]
$$

so

$$
M=\left[\begin{array}{lll}
2 & -4 & 5 \\
0 & -1 & 3
\end{array}\right]
$$

8. We know that for any $\mathbf{v} \in V$, we have

$$
[T(\mathbf{v})]_{\mathfrak{B}}=[T]_{\mathfrak{B}}[\mathbf{v}]_{\mathfrak{B}}
$$

However

$$
\left[3 \mathbf{b}_{1}-4 \mathbf{b}_{2}\right]_{\mathfrak{B}}=\left[\begin{array}{r}
3 \\
-4 \\
0
\end{array}\right]
$$

so we can calculate

$$
[T(\mathbf{v})]_{\mathfrak{B}}=\left[\begin{array}{rrr}
0 & -6 & 1 \\
0 & 5 & -1 \\
1 & -2 & 7
\end{array}\right]\left[\begin{array}{r}
3 \\
-4 \\
0
\end{array}\right]=\left[\begin{array}{r}
24 \\
-20 \\
11
\end{array}\right]
$$

which implies

$$
T(\mathbf{v})=24 \mathbf{b}_{1}-20 \mathbf{b}_{2}+11 \mathbf{b}_{3}
$$

12. We must find

$$
[T]_{\mathfrak{B}}=\left[\begin{array}{ll}
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathfrak{B}}} & \left.\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathfrak{B}}\right]=\left[\begin{array}{ll}
{\left[A \mathbf{b}_{1}\right]_{\mathfrak{B}}} & {\left[A \mathbf{b}_{2}\right]_{\mathfrak{B}}}
\end{array}\right], ~
\end{array}\right.
$$

For the first column,

$$
A \mathbf{b}_{1}=\left[\begin{array}{ll}
-1 & 4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
0
\end{array}\right]
$$

To express it in \mathfrak{B}-coordinates, we must find weights such that $\left[\begin{array}{l}5 \\ 0\end{array}\right]=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}=x_{1}\left[\begin{array}{l}3 \\ 2\end{array}\right]+$ $x_{2}\left[\begin{array}{r}-1 \\ 1\end{array}\right]$. In other words, we must solve the equation

$$
\left[\begin{array}{rr}
3 & -1 \\
2 & 1
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
5 \\
0
\end{array}\right]
$$

The usual method yields the unique solution $\left[\begin{array}{r}1 \\ -2\end{array}\right]$.

For the second column,

$$
A \mathbf{b}_{1}=\left[\begin{array}{ll}
-1 & 4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
5
\end{array}\right]
$$

and solving the equation

$$
\left[\begin{array}{rr}
3 & -1 \\
2 & 1
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
5 \\
5
\end{array}\right]
$$

gives the unique solution $\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Thus, the matrix is

$$
M=\left[\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

16. We must diagonalize A. Its characteristic equation is

$$
(2-\lambda)(3-\lambda)-6=\lambda^{2}-5 \lambda=\lambda(\lambda-5)=0
$$

yields the eigenvalues 0 and 5. The usual method gives a basis for the null space of $A-0 I$, namely $\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$, and a basis for the null space of $A-5 \lambda$, namely $\left\{\left[\begin{array}{r}2 \\ -1\end{array}\right]\right\}$. This gives a diagonalization $A=P D P^{-1}$ with

$$
P=\left[\begin{array}{rr}
3 & 2 \\
1 & -1
\end{array}\right] \quad D=\left[\begin{array}{ll}
0 & 0 \\
0 & 5
\end{array}\right]
$$

By Theorem 5.8, the basis

$$
\mathfrak{B}=\left\{\left[\begin{array}{l}
3 \\
1
\end{array}\right],\left[\begin{array}{r}
2 \\
-1
\end{array}\right]\right\}
$$

satisfies $[T]_{\mathfrak{B}}=D$, a diagonal matrix.
20. By definition, A and B similar implies there exists an invertible P such that $A=P B P^{-1}$. Therefore,

$$
A^{2}=\left(P B P^{-1}\right)\left(P B P^{-1}\right)=P B\left(P^{-1} P\right) B P^{-1}=P B B P^{-1}=P B^{2} P^{-1}
$$

and so, by definition, A^{2} is similar to B^{2}.
22. By definition, A diagonalizable implies there exists an invertible P and a diagonal D such that $A=P D P^{-1}$. If A and B are similar, then there exists an invertible matrix, say Q, such that $B=Q A Q^{-1}$. But, then,

$$
B=Q A Q^{-1}=Q P D P^{-1} Q^{-1}
$$

Since P and Q invertible implies $Q P$ invertible with $(Q P)^{-1}=P^{-1} Q^{-1}$, there exists an invertible matrix (specifically $R=Q P$) such that $B=R D R^{-1}$. That is, by definition, B is diagonalizable.

Exercises 6.1 (p. 376)

Assignment: Do \#19, 20, 1, 5, 8, 12, 13, 26
19. (a) True. (p. 370)
(b) True. (Theorem 5.1, p. 370)
(c) True. (p. 373)
(d) False. For any matrix, $\operatorname{Col} A$ and $\operatorname{Nul} A^{T}$ are orthogonal, but we don't have $\operatorname{Col} A$ and $\operatorname{Nul} A$ orthogonal in general, even if A is square. For example, the matrix $A=\left[\begin{array}{cc}1 & 0 \\ 1 & 0\end{array}\right]$ has $(1,1)$ in its column space and $(0,1)$ in its null space, and these vectors are not orthogonal.
(e) True. (p. 374)
20. (a) True, since $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$.
(b) False. Instead, $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$.
(c) True. (p. 374)
(d) True. (Theorem 5.2, p. 374)
(e) True. (Theorem 5.3, p. 375)

1. $\mathbf{u} \cdot \mathbf{u}=(-1)(-1)+2(2)=5 \quad \mathbf{v} \cdot \mathbf{u}=4(-1)+6(2)=8 \quad \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}=\frac{8}{5}$
2.

$$
\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=\left(\frac{8}{4^{2}+6^{2}}\right) \mathbf{v}=\frac{8}{52}\left[\begin{array}{l}
4 \\
6
\end{array}\right]=\left[\begin{array}{r}
8 / 13 \\
12 / 13
\end{array}\right]
$$

8. $\|\mathbf{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{6^{2}+(-2)^{2}+3^{2}}=\sqrt{36+4+9}=\sqrt{49}=7$
9. Normalizing the vector:

$$
\frac{1}{\left\|\left[\begin{array}{c}
8 / 3 \\
2
\end{array}\right]\right\|}\left[\begin{array}{c}
8 / 3 \\
2
\end{array}\right]=\left(\frac{1}{\sqrt{64 / 9+4}}\right)\left[\begin{array}{c}
8 / 3 \\
2
\end{array}\right]=\left(\frac{1}{\sqrt{100 / 9}}\right)\left[\begin{array}{c}
8 / 3 \\
2
\end{array}\right]=\left(\frac{1}{10 / 3}\right)\left[\begin{array}{c}
8 / 3 \\
2
\end{array}\right]=\frac{3}{10}\left[\begin{array}{c}
8 / 3 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 / 5 \\
3 / 5
\end{array}\right]
$$

13.

$$
\operatorname{dist}\left(\left[\begin{array}{c}
10 \\
-3
\end{array}\right],\left[\begin{array}{l}
-1 \\
-5
\end{array}\right]\right)=\left\|\left.\left[\begin{array}{c}
10 \\
-3
\end{array}\right]-\left[\begin{array}{c}
-1 \\
-5
\end{array}\right] \right\rvert\,=\right\|\left[\begin{array}{r}
11 \\
2
\end{array}\right] \|=\sqrt{11^{2}+2^{2}}=\sqrt{125}=5 \sqrt{5}
$$

26. We can rewrite the equation $\mathbf{u} \cdot \mathbf{x}=0$ as the homogeneous matrix equation $\mathbf{u}^{T} \mathbf{x}=\mathbf{0}$. Therefore, by Theorem 4.2, the solution set of this equation (which is the set W) is a subspace of \mathbb{R}^{3}. Since the dimension of the column space of the matrix \mathbf{u}^{T} is 1 , by the Rank Theorem, the dimension of the null space W is 2 . A 2-dimensional subspace of \mathbb{R}^{3} is a plane through the origin, so W is the plane through the origin perpendicular to \mathbf{u}.

Exercises 6.2 (p. 386)

Assignment: Do \#23, 24, 1, 3, 9, 11, 15, 20
23. (a) True. Most linearly independent sets in \mathbb{R}^{n} aren't orthogonal sets.
(b) True. Theorem 6.5 can be used to calculate the weights.
(c) False. The normalized vectors are always orthogonal if the original vectors were.
(d) False. A square matrix with orthonormal columns is an orthogonal matrix.
(e) False. $\|\mathbf{y}-\hat{\mathbf{y}}\|$ gives the distance from \mathbf{y} to L.
24. (a) True. Orthogonal sets can contain the zero vector, and such a set is linearly dependent.
(b) False. Such a set is orthogonal, but the vectors must be unit length (must have $\mathbf{u}_{i} \cdot \mathbf{u}_{i}=1$ for all i) in order to be orthonormal.
(c) True. (p. 385)
(d) True. (p. 381)
(e) True. (p. 385)

1. Since

$$
\left[\begin{array}{r}
-1 \\
4 \\
-3
\end{array}\right] \cdot\left[\begin{array}{r}
3 \\
-4 \\
-7
\end{array}\right]=(-1)(3)+4(-4)+(-3)(-7)=2 \neq 0
$$

this set is not orthogonal.
3. Since

$$
\left[\begin{array}{r}
-6 \\
-3 \\
9
\end{array}\right] \cdot\left[\begin{array}{r}
3 \\
1 \\
-1
\end{array}\right]=-6(3)+(-3)(1)+9(-1)=-18-3-9=-30 \neq 0
$$

this set is not orthogonal.
9. Since $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=1(-1)+0(4)+1(1)=0, \mathbf{u}_{1} \cdot \mathbf{u}_{3}=1(2)+0(1)+1(-2)=0$, and $\mathbf{u}_{2} \cdot \mathbf{u}_{3}=$ $-1(2)+4(1)+1(-2)=0$, the set is orthogonal. Because it contains no zero vectors, it is linearly independent, and a linearly independent set of 3 vectors in \mathbb{R}^{3} is a basis for \mathbb{R}^{3}. We can use Theorem 6.5 to write

$$
\mathbf{x}=\frac{\mathbf{x} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{x} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\frac{\mathbf{x} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}} \mathbf{u}_{3}
$$

which gives

$$
\begin{aligned}
\mathbf{x}=\frac{\left[\begin{array}{r}
8 \\
-4 \\
-3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] & +\frac{\left[\begin{array}{r}
8 \\
-4 \\
-3
\end{array}\right] \cdot\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right]}{\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right]}\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right]+\frac{\left[\begin{array}{r}
8 \\
-4 \\
-3
\end{array}\right] \cdot\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right]}{\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right] \cdot\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right]}\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right] \\
& =\frac{5}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\frac{-27}{18}\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right]+\frac{18}{9}\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right]=\frac{5}{2}\left[\begin{array}{r}
1 \\
0 \\
1
\end{array}\right]-\frac{3}{2}\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right]+2\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right]
\end{aligned}
$$

11. This is simply

$$
\frac{\left[\begin{array}{l}
1 \\
7
\end{array}\right] \cdot\left[\begin{array}{r}
-4 \\
2
\end{array}\right]}{\left[\begin{array}{r}
-4 \\
2
\end{array}\right] \cdot\left[\begin{array}{r}
-4 \\
2
\end{array}\right]}\left[\begin{array}{r}
-4 \\
2
\end{array}\right]=\frac{10}{20}\left[\begin{array}{r}
-4 \\
2
\end{array}\right]=\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
$$

15. This is the length of:

$$
\mathbf{y}-\hat{\mathbf{y}}=\mathbf{y}-\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\frac{\left[\begin{array}{l}
3 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
8 \\
6
\end{array}\right]}{\left[\begin{array}{l}
8 \\
6
\end{array}\right] \cdot\left[\begin{array}{l}
8 \\
6
\end{array}\right]}\left[\begin{array}{l}
8 \\
6
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\frac{30}{100}\left[\begin{array}{l}
8 \\
6
\end{array}\right]=\left[\begin{array}{r}
3 / 5 \\
-4 / 5
\end{array}\right]
$$

which is

$$
\|\mathbf{y}-\hat{\mathbf{y}}\|=\sqrt{9 / 25+16 / 25}=\sqrt{25 / 25}=1
$$

20. Note that this set is orthogonal. The length of the first vector is

$$
\sqrt{(-2 / 3)^{2}+(1 / 3)^{2}+(2 / 3)^{2}}=\sqrt{4 / 9+1 / 9+4 / 9}=\sqrt{9 / 9}=1
$$

so it is already a unit vector. The length of the second vector is

$$
\sqrt{(1 / 3)^{2}+(2 / 3)^{2}}=\sqrt{1 / 9+4 / 9}=\sqrt{5 / 9}=\sqrt{5} / 3
$$

Normalizing it gives

$$
\frac{1}{\sqrt{5} / 3}\left[\begin{array}{r}
1 / 3 \\
2 / 3 \\
0
\end{array}\right]=\frac{3}{\sqrt{5}}\left[\begin{array}{r}
1 / 3 \\
2 / 3 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 / \sqrt{5} \\
2 / \sqrt{5} \\
0
\end{array}\right]
$$

giving the orthonormal set

$$
\left\{\left[\begin{array}{r}
-2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right],\left[\begin{array}{r}
1 / \sqrt{5} \\
2 / \sqrt{5} \\
0
\end{array}\right]\right\}
$$

Exercises 6.3 (p. 395)

Assignment: Do \#21, 22, 2, 3, 7, 11, 18, 19
21. (a) True. (p. 374)
(b) True. (Theorem 6.8, p. 390)
(c) False. (p. 391)
(d) True. (p. 392)
(e) True. (p. 394)
22. (a) True. Suppose $\mathbf{v} \in W$. If $\mathbf{v} \in W^{\perp}$, then it is orthogonal to every vector in W. In particular, it must be orthogonal to itself: $\mathbf{v} \cdot \mathbf{v}=0$. But this is only true for the zero vector, so $\mathbf{v}=\mathbf{0}$.
(b) True. (p. 390)
(c) True. (Theorem 6.8, p. 390)
(d) False. It's given by proj $W \mathbf{y}$.
(e) False. Instead, $U U^{T} \mathbf{y}=\operatorname{proj}_{W} \mathbf{y}$ for all $\mathbf{y} \in \mathbb{R}^{n}$ and $U^{T} U \mathbf{x}=\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{p}$.
2. These four nonzero, orthogonal vectors must form a basis for \mathbb{R}^{4}, so by Theorem 6.5 , we can write

$$
\mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\underbrace{\frac{\mathbf{v} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}+\frac{\mathbf{v} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}} \mathbf{u}_{3}+\frac{\mathbf{v} \cdot \mathbf{u}_{4}}{\mathbf{u}_{4} \cdot \mathbf{u}_{4}} \mathbf{u}_{4}}_{\mathbf{z}}
$$

The first of these terms is easily calculated:

$$
\frac{\left[\begin{array}{r}
4 \\
5 \\
-3 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right]}{\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right]}\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right]=\frac{14}{7}\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
2 \\
2
\end{array}\right]
$$

It is unnecessary to calculate the $\operatorname{sum} \mathbf{z}$ of the other three terms explicitly. Instead, we write:

$$
\mathbf{z}=\mathbf{v}-\hat{\mathbf{v}}=\left[\begin{array}{r}
4 \\
5 \\
-3 \\
3
\end{array}\right]-\left[\begin{array}{l}
2 \\
4 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{r}
2 \\
1 \\
-5 \\
1
\end{array}\right]
$$

and

$$
\left[\begin{array}{r}
4 \\
5 \\
-3 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
2 \\
2
\end{array}\right]+\left[\begin{array}{r}
2 \\
1 \\
-5 \\
1
\end{array}\right]
$$

is the desired sum.
3. By Theorem 6.8,

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{\left[\begin{array}{r}
-1 \\
4 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\frac{\left[\begin{array}{r}
-1 \\
4 \\
3
\end{array}\right] \cdot\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]}{\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]}\left[\begin{array}{r}
1 \\
0
\end{array}\right]=\frac{3}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\frac{5}{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
4 \\
0
\end{array}\right]
$$

7. By Theorem 6.8,

$$
\begin{aligned}
& \hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right]}{\left[\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right]}\left[\begin{array}{l}
3 \\
-2
\end{array}\right]+\frac{\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
1 \\
4
\end{array}\right]}{\left[\begin{array}{l}
5 \\
1 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
5 \\
1 \\
4
\end{array}\right]}\left[\begin{array}{l}
\\
4
\end{array}\right] \\
& =\frac{0}{14}\left[\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right]+\frac{28}{42}\left[\begin{array}{l}
5 \\
1 \\
4
\end{array}\right]=\frac{2}{3}\left[\begin{array}{l}
5 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{r}
10 / 3 \\
2 / 3 \\
8 / 3
\end{array}\right]
\end{aligned}
$$

and

$$
\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]-\left[\begin{array}{r}
10 / 3 \\
2 / 3 \\
8 / 3
\end{array}\right]=\left[\begin{array}{r}
-7 / 3 \\
7 / 3 \\
7 / 3
\end{array}\right]
$$

so the desired sum is

$$
\mathbf{y}=\left[\begin{array}{r}
10 / 3 \\
2 / 3 \\
8 / 3
\end{array}\right]+\left[\begin{array}{r}
-7 / 3 \\
7 / 3 \\
7 / 3
\end{array}\right]
$$

11. By the Best Approximation Theorem, this is

$$
\hat{\mathbf{y}}=\frac{\left[\begin{array}{l}
3 \\
1 \\
5 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
3 \\
1 \\
-1 \\
1
\end{array}\right]}{\left[\begin{array}{r}
3 \\
1 \\
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
3 \\
1 \\
-1 \\
1
\end{array}\right]}\left[\begin{array}{r}
{[} \\
-1 \\
1
\end{array}\right]+\frac{\left[\begin{array}{l}
3 \\
1 \\
5 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]}{\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\frac{6}{12}\left[\begin{array}{r}
3 \\
1 \\
-1 \\
1
\end{array}\right]+\frac{6}{4}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

18. (a)

$$
\begin{aligned}
& U^{T} U=\left[\begin{array}{ll}
1 / \sqrt{10} & -3 / \sqrt{10}
\end{array}\right]\left[\begin{array}{r}
1 / \sqrt{10} \\
-3 / \sqrt{10}
\end{array}\right]=[1 / 10+9 / 10]=[1] \\
& U U^{T}=\left[\begin{array}{r}
1 / \sqrt{10} \\
-3 / \sqrt{10}
\end{array}\right]\left[\begin{array}{ll}
1 / \sqrt{10} & -3 / \sqrt{10}
\end{array}\right]=\left[\begin{array}{rr}
1 / 10 & -3 / 10 \\
-3 / 10 & 9 / 10
\end{array}\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \operatorname{proj}_{W} \mathbf{y}=\frac{\left[\begin{array}{l}
7 \\
9
\end{array}\right] \cdot\left[\begin{array}{r}
1 / \sqrt{10} \\
-3 / \sqrt{10}
\end{array}\right]}{\left[\begin{array}{r}
1 / \sqrt{10} \\
-3 / \sqrt{10}
\end{array}\right] \cdot\left[\begin{array}{r}
1 / \sqrt{10} \\
-3 / \sqrt{10}
\end{array}\right]}\left[\begin{array}{r}
1 / \sqrt{10} \\
-3 / \sqrt{10}
\end{array}\right]=\frac{-20 / \sqrt{10}}{1}\left[\begin{array}{r}
1 / \sqrt{10} \\
-3 / \sqrt{10}
\end{array}\right]=\left[\begin{array}{r}
-2 \\
6
\end{array}\right] \\
& \left(U U^{T}\right) \mathbf{y}=\left[\begin{array}{rr}
1 / 10 & -3 / 10 \\
-3 / 10 & 9 / 10
\end{array}\right]\left[\begin{array}{l}
7 \\
9
\end{array}\right]=\left[\begin{array}{r}
-20 / 10 \\
60 / 10
\end{array}\right]=\left[\begin{array}{r}
-2 \\
6
\end{array}\right]
\end{aligned}
$$

19. By Theorem 6.8, the projection of \mathbf{u}_{3} onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is

$$
\begin{aligned}
& \hat{\mathbf{u}}_{3}=\frac{\mathbf{u}_{3} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{u}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right]}{\left[\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right]}\left[\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right]+\frac{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
5 \\
-1 \\
2
\end{array}\right]}{\left[\begin{array}{r}
5 \\
-1 \\
2
\end{array}\right] \cdot\left[\begin{array}{r}
5 \\
-1 \\
2
\end{array}\right]}\left[\begin{array}{r}
5 \\
-1 \\
2
\end{array}\right] \\
&=\frac{-2}{6}\left[\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right]+\frac{2}{30}\left[\begin{array}{r}
5 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{r}
0 \\
-2 / 5 \\
4 / 5
\end{array}\right]
\end{aligned}
$$

and a vector orthogonal to this space is

$$
\mathbf{z}=\mathbf{u}_{3}-\hat{\mathbf{u}}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{r}
0 \\
-2 / 5 \\
4 / 5
\end{array}\right]=\left[\begin{array}{r}
0 \\
2 / 5 \\
1 / 5
\end{array}\right]
$$

Exercises 6.4 (p. 402)

Assignment: Do \#17, 18, 4, 5, 8, 11, 15
17. (a) False. If $c=0$, the new set won't be a basis.
(b) True. (p. 399)
(c) True. (p. 401)
18. (a) False. If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is orthogonal and has no nonzero vectors, then it will form a basis for W.
(b) True.
(c) True. (Theorem 6.12, p. 400)
4. By Gram-Schmidt, take

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
3 \\
-4 \\
5
\end{array}\right]
$$

and take

$$
\mathbf{v}_{2}=\left[\begin{array}{r}
-3 \\
14 \\
-7
\end{array}\right]-\frac{\left[\begin{array}{r}
-3 \\
14 \\
-7
\end{array}\right] \cdot\left[\begin{array}{r}
3 \\
-4 \\
5
\end{array}\right]}{\left[\begin{array}{r}
3 \\
-4 \\
5
\end{array}\right] \cdot\left[\begin{array}{r}
3 \\
-4 \\
5
\end{array}\right]}\left[\begin{array}{r}
3 \\
5
\end{array}\right]=\left[\begin{array}{r}
-3 \\
14 \\
-7
\end{array}\right]-\frac{-100}{50}\left[\begin{array}{r}
3 \\
-4 \\
5
\end{array}\right]=\left[\begin{array}{r}
-3 \\
14 \\
-7
\end{array}\right]+\left[\begin{array}{r}
6 \\
-8 \\
10
\end{array}\right]=\left[\begin{array}{l}
3 \\
6 \\
3
\end{array}\right]
$$

Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthogonal basis.
5. Take

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-4 \\
0 \\
1
\end{array}\right]
$$

and

$$
\mathbf{v}_{2}=\left[\begin{array}{r}
7 \\
-7 \\
-4 \\
1
\end{array}\right]-\frac{\left[\begin{array}{r}
7 \\
-7 \\
-4 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-4 \\
0 \\
1
\end{array}\right]}{\left[\begin{array}{r}
1 \\
-4 \\
0 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-4 \\
0 \\
1
\end{array}\right]}\left[\begin{array}{r}
1 \\
-4 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
7 \\
-7 \\
-4 \\
1
\end{array}\right]-\frac{36}{18}\left[\begin{array}{r}
1 \\
-4 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
5 \\
1 \\
-4 \\
-1
\end{array}\right]
$$

and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthogonal basis.
8. Normalizing the basis from problem 4 gives:

$$
\mathbf{u}_{1}=\frac{1}{\left\|\mathbf{v}_{1}\right\|} \mathbf{v}_{1}=\frac{1}{\sqrt{3^{2}+(-4)^{2}+5^{2}}}\left[\begin{array}{r}
3 \\
-4 \\
5
\end{array}\right]=\frac{1}{\sqrt{50}}\left[\begin{array}{r}
3 \\
-4 \\
5
\end{array}\right]=\left[\begin{array}{c}
3 / \sqrt{50} \\
-4 / \sqrt{50} \\
5 / \sqrt{50}
\end{array}\right]
$$

and

$$
\mathbf{u}_{2}=\frac{1}{\left\|\mathbf{v}_{2}\right\|} \mathbf{v}_{2}=\frac{1}{\sqrt{3^{2}+6^{2}+3^{2}}}\left[\begin{array}{l}
3 \\
6 \\
3
\end{array}\right]=\frac{1}{\sqrt{54}}\left[\begin{array}{l}
3 \\
6 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 / \sqrt{54} \\
6 / \sqrt{54} \\
3 / \sqrt{54}
\end{array}\right]
$$

11. Using Gram-Schmidt,

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right]
$$

and

$$
\mathbf{v}_{2}=\left[\begin{array}{r}
2 \\
1 \\
4 \\
-4 \\
2
\end{array}\right]-\frac{\left[\begin{array}{r}
2 \\
1 \\
4 \\
-4 \\
2
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right]}{\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
-1 \\
-1 \\
1
\end{array}\right]}\left[\begin{array}{r}
{[} \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
2 \\
1 \\
4 \\
-4 \\
2
\end{array}\right]-\frac{-5}{5}\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
3 \\
0 \\
3 \\
-3 \\
3
\end{array}\right]
$$

and finally

$$
\begin{aligned}
& =\left[\begin{array}{r}
5 \\
-4 \\
-3 \\
7 \\
1
\end{array}\right]-\frac{20}{5}\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right]-\frac{-12}{36}\left[\begin{array}{r}
3 \\
0 \\
3 \\
-3 \\
3
\end{array}\right]=\left[\begin{array}{r}
5-4+1 \\
-4+4+0 \\
-3+4+1 \\
7-4-1 \\
1-4+1
\end{array}\right]=\left[\begin{array}{r}
2 \\
0 \\
2 \\
2 \\
-2
\end{array}\right]
\end{aligned}
$$

giving a basis

$$
\left\{\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
3 \\
0 \\
3 \\
-3 \\
3
\end{array}\right],\left[\begin{array}{r}
2 \\
0 \\
2 \\
2 \\
-2
\end{array}\right]\right\}
$$

15. We must normalize the basis from problem 11 to produce an orthonormal basis for the columns of Q. This lengths of the vectors are $\sqrt{5}, \sqrt{36}=6$, and $\sqrt{16}=4$ respectively, so our orthonormal basis is:

$$
\left\{\left[\begin{array}{r}
1 / \sqrt{5} \\
-1 / \sqrt{5} \\
-1 / \sqrt{5} \\
1 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right],\left[\begin{array}{r}
1 / 2 \\
0 \\
1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right],\left[\begin{array}{r}
1 / 2 \\
0 \\
1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right]\right\}
$$

giving a Q matrix of

$$
Q=\left[\begin{array}{rrr}
1 / \sqrt{5} & 1 / 2 & 1 / 2 \\
-1 / \sqrt{5} & 0 & 0 \\
-1 / \sqrt{5} & 1 / 2 & 1 / 2 \\
1 / \sqrt{5} & -1 / 2 & 1 / 2 \\
1 / \sqrt{5} & 1 / 2 & -1 / 2
\end{array}\right]
$$

and an R matrix of

$$
R=Q^{T} A=\left[\begin{array}{rrrrr}
1 / \sqrt{5} & -1 / \sqrt{5} & -1 / \sqrt{5} & 1 / \sqrt{5} & 1 / \sqrt{5} \\
1 / 2 & 0 & 1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 & 1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{rrr}
1 & 2 & 5 \\
-1 & 1 & -4 \\
-1 & 4 & -3 \\
1 & -4 & 7 \\
1 & 2 & 1
\end{array}\right]=\left[\begin{array}{rrr}
5 / \sqrt{5} & -5 / \sqrt{5} & 20 / \sqrt{5} \\
0 & 6 & -2 \\
0 & 0 & 4
\end{array}\right]
$$

giving the $Q R$ factorization.

