Homework Set \#9 Solutions

Exercises 2.9 (p. 174)

Assignment: Do \#5, 7, 9, 12, 14, 16, 18, 20, 22, 24, 28
5. This is equivalent to determining if \mathbf{w} is in the span of \mathbf{v}_{1} and \mathbf{v}_{2}, so we form the augmented matrix and determine if the system is consistent:

Since the system is inconsistent, \mathbf{w} is not in the subspace.
7. (a) There are only three vectors in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
(b) There are an infinite number of vectors in $\operatorname{Col} A$: it is the set of all linear combinations of A 's three columns, and there are infinite number of those.
(c) To answer this, we must determine if \mathbf{p} is in the span of the other vectors:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
(2) & -3 & -4 & 6 \\
-8 & 8 & 6 & -10 \\
6 & -7 & -7 & 11
\end{array}\right] \xrightarrow{R 2 \rightarrow R 2+4 R 1}\left[\begin{array}{cccc}
(2) & -3 & -4 & 6 \\
0 & -4 & -10 & 14 \\
6 & -7 & -7 & 11
\end{array}\right]} \\
\Uparrow
\end{gathered} \begin{gathered}
{\left[\begin{array}{cccc}
2 & -3 & -4 & 6 \\
0 & -4 & -10 & 14 \\
0 & 2 & 5 & -7
\end{array}\right] \xrightarrow{R 3 \rightarrow R 3+\frac{1}{2} R 2}\left[\begin{array}{cccc}
{\left[\begin{array}{ccc}
2 & -3 & -4 \\
0 \\
0 & -4 & -10 \\
14 \\
0 & 0 & 0
\end{array}\right.} & 0
\end{array}\right]}
\end{gathered}
$$

Since this system is consistent, \mathbf{p} is in $\operatorname{Col} A$.
9. All we need to do is check the value of $A \mathbf{p}$ like so:

$$
\left[\begin{array}{rrr}
2 & -3 & -4 \\
-8 & 8 & 6 \\
6 & -7 & -7
\end{array}\right]\left[\begin{array}{r}
6 \\
-10 \\
11
\end{array}\right]=\left[\begin{array}{r}
-2 \\
-62 \\
29
\end{array}\right]
$$

Obviously, \mathbf{p} isn't a solution of $A \mathbf{x}=\mathbf{0}$, so it is not in $\operatorname{Nul} A$.
12. There are three unknowns, so solutions in $\operatorname{Nul} A$ are vectors in $\mathbb{R}^{3}(p=3)$. Since there are 4 rows, $\operatorname{Col} A$ must be a subspace of $\mathbb{R}^{4}(q=4)$.
14. Finding a nonzero vector in $\operatorname{Col} A$ is easy. For example, the first column $(1,4,-5,2)$ will work. Finding a nonzero vector in $\mathrm{Nul} A$ is harder. We have to solve the homogeneous equation:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
4 & 5 & 7 & 0 \\
-5 & -1 & 0 & 0 \\
2 & 7 & 11 & 0
\end{array}\right] \xrightarrow{R 2 \rightarrow R 2-4 R 1}\left[\begin{array}{cccc}
(1) & 2 & 3 & 0 \\
0 & -3 & -5 & 0 \\
-5 & -1 & 0 & 0 \\
2 & 7 & 11 & 0
\end{array}\right] \xrightarrow{R 3 \rightarrow R 3+5 R 1}\left[\begin{array}{cccc}
(1) & 2 & 3 & 0 \\
0 & -3 & -5 & 0 \\
0 & 9 & 15 & 0 \\
2 & 7 & 11 & 0
\end{array}\right]} \\
& \xrightarrow{R 4 \rightarrow R 4-2 R 1}\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & -3 & -5 & 0 \\
0 & 9 & 15 & 0 \\
0 & 3 & 5 & 0
\end{array}\right] \xrightarrow{R 3 \rightarrow R 3+3 R 2}\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & -3 & -5 & 0 \\
0 & 0 & 0 & 0 \\
0 & 3 & 5 & 0
\end{array}\right] \\
& \xrightarrow{R 4 \rightarrow R 4+R 2}\left[\begin{array}{cccc}
\boxed{1} & 2 & 3 & 0 \\
0 & -3 & -5 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R 2 \rightarrow-\frac{1}{3} R 2}\left[\begin{array}{cccc}
\begin{array}{|ccc}
1 & 2 & 3
\end{array} & 0 \\
0 & 1 & \frac{5}{3} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R 1 \rightarrow R 1-2 R 2}\left[\begin{array}{cccc}
1 & 0 & -\frac{1}{3} & 0 \\
0 & \boxed{1} & \frac{5}{3} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This gives a general solution

$$
\left\{\begin{array}{l}
x_{1}=\frac{1}{3} x_{3} \\
x_{2}=-\frac{5}{3} x_{3} \\
x_{3} \text { free }
\end{array}\right.
$$

and a vector parametric solution

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
\frac{1}{3} x_{3} \\
-\frac{5}{3} x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{r}
\frac{1}{3} \\
-\frac{5}{3} \\
1
\end{array}\right], \quad x_{3} \text { free }
$$

Thus, any nonzero multiple of this vector will work, including $(1,-5,3)$.
16. These vectors are scalar multiples of each other. Therefore, they are linearly dependent and cannot form a basis.
18. If we put these vectors into the columns of a matrix and reduce it to echelon form, we see that:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 & -5 & 7 \\
1 & -1 & 0 \\
-2 & 2 & -5
\end{array}\right] \xrightarrow{R 2 \rightarrow R 2-R 1}\left[\begin{array}{ccc}
(1) & -5 & 7 \\
0 & 4 & -7 \\
-2 & 2 & -5
\end{array}\right]} \\
\Uparrow
\end{array}\right.} \\
& \xrightarrow{R 3 \rightarrow R 3+2 R 1}\left[\begin{array}{ccc}
1 & -5 & 7 \\
0 & 4 & -7 \\
0 & -8 & 9
\end{array}\right] \xrightarrow{R 3 \rightarrow R 3+2 R 2}\left[\begin{array}{ccc}
\boxed{1} & -5 & 7 \\
0 & \boxed{4} & -7 \\
0 & 0 & \boxed{-5}
\end{array}\right]
\end{aligned}
$$

Since this matrix has a pivot position in every row, it spans \mathbb{R}^{3}. Also, by the Invertible Matrix Theorem, its columns are linearly independent. Therefore, its columns form a basis for \mathbb{R}^{3} by definition.
20. There are more vectors than entries in each vector. By Theorem 1.8, the vectors are linearly dependent. Therefore, they cannot form a basis.
22. From the echelon form, we see that the first and third columns of A are pivot columns. Therefore, those columns:

$$
\left\{\left[\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right],\left[\begin{array}{r}
2 \\
0 \\
-4
\end{array}\right]\right\}
$$

form a basis for $\operatorname{Col} A$. To find a basis for $\operatorname{Nul} A$, we must augment the matrix and reduce it
to reduced echelon form:

$$
\left[\begin{array}{ccccc}
\boxed{1} & -3 & 2 & 5 & 0 \\
0 & 0 & 4 & 7 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R 2 \rightarrow \frac{1}{4} R 2}\left[\begin{array}{ccccc}
\boxed{1} & -3 & 2 & 5 & 0 \\
0 & 0 & (1) & \frac{7}{4} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R 1 \rightarrow R 1-2 R 2}\left[\begin{array}{ccccc}
(1) & -3 & 0 & \frac{3}{2} & 0 \\
0 & 0 & \boxed{1} & \frac{7}{4} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This gives a general solution

$$
\left\{\begin{array}{l}
x_{1}=3 x_{2}-\frac{3}{2} x_{4} \\
x_{3}=-\frac{7}{4} x_{4} \quad x_{2}, x_{4} \text { free }
\end{array}\right.
$$

and vector parametric form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-\frac{3}{2} \\
0 \\
-\frac{7}{4} \\
1
\end{array}\right], \quad x_{2}, x_{4} \text { free }
$$

These two vectors form a basis for $\operatorname{Nul} A$.
24. From the echelon form, we see that the first, second, and fourth columns of A are pivot columns. Therefore, those columns:

$$
\left\{\left[\begin{array}{r}
3 \\
-2 \\
5 \\
-2
\end{array}\right],\left[\begin{array}{r}
-5 \\
4 \\
-9 \\
6
\end{array}\right],\left[\begin{array}{r}
4 \\
7 \\
-3 \\
5
\end{array}\right]\right\}
$$

form a basis for $\operatorname{Col} A$. To find a basis for $\operatorname{Nul} A$, we continue the reduction:

$$
\left[\begin{array}{cccccc}
\boxed{3} & -5 & -1 & 0 & 0 & 0 \\
0 & 2 & 4 & 0 & 3 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R 2 \rightarrow \frac{1}{2} R 2}\left[\begin{array}{cccccc}
{\left[\begin{array}{ccccc}
3 & -5 & -1 & 0 & 0 \\
0
\end{array}\right.} \\
& \Uparrow & (1) & 2 & 0 & \frac{3}{2} \\
0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & \Uparrow & & & & 0
\end{array}\right]
$$

$$
\xrightarrow{R 1 \rightarrow R 1+5 R 2}\left[\begin{array}{cccccc}
(3) & 0 & 9 & 0 & \frac{15}{2} & 0 \\
0 & \boxed{1} & 2 & 0 & \frac{3}{2} & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R 1 \rightarrow \frac{1}{3} R 1}\left[\begin{array}{cccccc}
1 & 0 & 3 & 0 & \frac{5}{2} & 0 \\
\uparrow & \boxed{1} & 2 & 0 & \frac{3}{2} & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

giving general solution

$$
\left\{\begin{array}{l}
x_{1}=-3 x_{3}-\frac{5}{2} x_{5} \\
x_{2}=-2 x_{3}-\frac{3}{2} x_{5} \\
x_{4}=-x_{5}
\end{array}\right.
$$

and vector parametric form

$$
\mathbf{x}=x_{3}\left[\begin{array}{r}
-3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-\frac{5}{2} \\
-\frac{3}{2} \\
0 \\
-1 \\
1
\end{array}\right], \quad x_{3}, x_{5} \text { free }
$$

These two vectors forms a basis for $\operatorname{Nul} A$.
28. No, $\operatorname{Col} A$ is not \mathbb{R}^{3}. Because A has four rows, $\operatorname{Col} A$ is a subspace of \mathbb{R}^{4} and so doesn't have anything to do with \mathbb{R}^{3}. The dimension of $\operatorname{Nul} A$ is given by the rank theorem as $\operatorname{dim} \operatorname{Nul} A=7-\operatorname{dim} \operatorname{Col} A=7-3=4$.

