Homework Set \#6 Solutions

Exercises 2.1 (p. 107)

Assignment: Do \#17, 19, 21, 25
17. The size of A and $A B$ tells us that the size of B must be 2×3. Furthermore, if $B=$ $\left[\begin{array}{lll}\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}\end{array}\right]$ then $A B=\left[\begin{array}{lll}A \mathbf{b}_{1} & A \mathbf{b}_{2} & A \mathbf{b}_{3}\end{array}\right]$.
In particular, the first column of $A B$ gives us the equation:

$$
A \mathbf{b}_{1}=\left[\begin{array}{rr}
1 & -2 \\
-2 & 5
\end{array}\right] \mathbf{b}_{1}=\left[\begin{array}{r}
-1 \\
6
\end{array}\right]
$$

The augmented matrix is

$$
\left[\begin{array}{rrr}
1 & -2 & -1 \\
-2 & 5 & 6
\end{array}\right]
$$

which, when reduced, gives the unique solution

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
7 \\
4
\end{array}\right]
$$

Similarly, the equation

$$
A \mathbf{b}_{2}=\left[\begin{array}{rr}
1 & -2 \\
-2 & 5
\end{array}\right] \mathbf{b}_{2}=\left[\begin{array}{r}
2 \\
-9
\end{array}\right]
$$

has the unique solution

$$
\mathbf{b}_{2}=\left[\begin{array}{l}
-8 \\
-5
\end{array}\right]
$$

19. The third column of $A B$ is $A \mathbf{b}_{3}=A\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right)=A \mathbf{b}_{1}+A \mathbf{b}_{2}$. Therefore, the third column of $A B$ is the sum of the first two columns of $A B$.
20. If B is $n \times p$, then the last column of $A B$ is $A \mathbf{b}_{p}=\mathbf{0}$. If B has no column of all zeros, then \mathbf{b}_{p} isn't all zeros. Therefore, $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution (namely \mathbf{b}_{p}), so the columns of A are linearly dependent.
21.

$$
\begin{aligned}
& \mathbf{u}^{T} \mathbf{v}=\left[\begin{array}{lll}
-2 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=-2 a+3 b-4 c \\
& \mathbf{v}^{T} \mathbf{u}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{r}
-2 \\
3 \\
-4
\end{array}\right]=-2 a+3 b-4 c \\
& \mathbf{u v}^{T}=\left[\begin{array}{r}
-2 \\
3 \\
-4
\end{array}\right]\left[\begin{array}{lll}
a & b & c
\end{array}\right]=\left[\begin{array}{rrr}
-2 a & -2 b & -2 c \\
3 a & 3 b & 3 c \\
-4 a & -4 b & -4 c
\end{array}\right] \\
& \mathbf{v u}^{T}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\left[\begin{array}{lll}
-2 & 3 & -4
\end{array}\right]=\left[\begin{array}{rrr}
-2 a & 3 a & -4 a \\
-2 b & 3 b & -4 b \\
-2 c & 3 c & -4 c
\end{array}\right]
\end{aligned}
$$

Exercises 2.2 (p. 117)

Assignment: $\operatorname{Do} \# 9,10,1,3,5,7,13,15$
9. (a) True. (p. 110)
(b) False. The inverse of $A B$ is $B^{-1} A^{-1}$.
(c) False. If $a d-b c \neq 0$, then A is invertible.
(d) True. (p. 111, Theorem 5)
(e) True. (p. 114)
10. (a) False. The product of invertible square matrices is invertible, but the inverse of the product is the product of their inverses in reverse order.
(b) True. (p. 113, Theorem 6)
(c) True, because then $a d-b c=0$.
(d) True. (p. 115, Theorem 7)
(e) False. It's backwards: they reduce I_{n} to A^{-1}.

1. By the formula,

$$
A^{-1}=\frac{1}{(-4) 6-(-5) 5}\left[\begin{array}{rr}
6 & -(-5) \\
-(5) & -4
\end{array}\right]=\frac{1}{1}\left[\begin{array}{rr}
6 & 5 \\
-5 & -4
\end{array}\right]=\left[\begin{array}{rr}
6 & 5 \\
-5 & -4
\end{array}\right]
$$

Alternatively, using the row reduction method is very tedious, but it works, too:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\begin{array}{ccc}
-4 & -5 & 1
\end{array} & 0 \\
5 & 6 & 0 & 1
\end{array}\right] \xrightarrow{R 2 \rightarrow R 2+\frac{5}{4} R 1}\left[\begin{array}{cccc}
\boxed{-4} & -5 & 1 & 0 \\
0 & \left(-\frac{1}{4}\right. & \frac{5}{4} & 1
\end{array}\right]} \\
& \xrightarrow{R 2 \rightarrow-4 R 2}\left[\begin{array}{cccc}
\left.\begin{array}{|c|ccc}
-4 & -5 & 1 & 0 \\
0 & (1) & -5 & -4
\end{array}\right] \xrightarrow{R 1 \rightarrow R 1+5 R 2}\left[\begin{array}{cccc}
\begin{array}{cc}
-4 & 0 \\
& -24 \\
& -20 \\
0 & \boxed{1}
\end{array} & -5 & -4
\end{array}\right] \\
& &
\end{array}\right. \\
& \xrightarrow{R 1 \rightarrow-\frac{1}{4} R 1}\left[\begin{array}{cccc}
\begin{array}{ccc}
1 & 0 & 6
\end{array} & 5 \\
0 & 1 & -5 & -4
\end{array}\right]
\end{aligned}
$$

3. Using the formula,

$$
A^{-1}=\frac{1}{3(13)-(-7)(-6)}\left[\begin{array}{rr}
13 & -(-7) \\
-(-6) & 3
\end{array}\right]=\frac{1}{-3}\left[\begin{array}{rr}
13 & 7 \\
6 & 3
\end{array}\right]=\left[\begin{array}{rr}
-13 / 3 & -7 / 3 \\
-2 & -1
\end{array}\right]
$$

5. By Theorem 5, the unique solution is

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{rr}
6 & 5 \\
-5 & -4
\end{array}\right]\left[\begin{array}{l}
5 \\
2
\end{array}\right]=\left[\begin{array}{r}
40 \\
-33
\end{array}\right]
$$

7. By the formula

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{rr}
8 & -2 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{rr}
4 & -1 \\
-3 / 2 & 1 / 2
\end{array}\right]
$$

By Theorem 5, the unique solutions are given by $A^{-1} \mathbf{b}_{1}$ through $A^{-1} \mathbf{b}_{4}$ respectively:

$$
\begin{aligned}
& A^{-1} \mathbf{b}_{1}=\left[\begin{array}{rr}
4 & -1 \\
-3 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
5 \\
7
\end{array}\right]=\left[\begin{array}{r}
13 \\
-4
\end{array}\right] \\
& A^{-1} \mathbf{b}_{2}=\left[\begin{array}{rr}
4 & -1 \\
-3 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]=\left[\begin{array}{r}
-6 \\
2
\end{array}\right] \\
& A^{-1} \mathbf{b}_{3}=\left[\begin{array}{rr}
4 & -1 \\
-3 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{r}
7 \\
-2
\end{array}\right] \\
& A^{-1} \mathbf{b}_{4}=\left[\begin{array}{rr}
4 & -1 \\
-3 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
7
\end{array}\right]=\left[\begin{array}{r}
-3 \\
2
\end{array}\right]
\end{aligned}
$$

13. As with all problems of this type, the idea is to simplify $A B=A C$ by taking advantage of the fact that A is invertible, and so we can "cancel" A (that is, change it into the identiy matrix) by multiplying it on the left or right by A^{-1}. We begin by multiplying both sides of the equation by A^{-1} on the left:

$$
\begin{aligned}
A B & =A C \\
A^{-1}(A B) & =A^{-1}(A C) \\
\left(A^{-1} A\right) B & =\left(A^{-1} A\right) C \\
I B & =I C \\
B & =C
\end{aligned}
$$

If A is not invertible, this won't be true in general. In fact, if $A=0$ is the (noninvertible) zero matrix, then $A B=A C$ for any matrices B and C.
15. We actually looked at this in class (but with $A B C D E$ instead of just $A B C$). Again, the key here is to construct a matrix that will cancel properly. If $(A B C) D=I$, we want the leftmost component of D to cancel C, then the remainder to cancel B, and then the remainder to cancel A. If we choose $D=C^{-1} B^{-1} A^{-1}$, this will work:

$$
(A B C) D=(A B C)\left(C^{-1} B^{-1} A^{-1}\right)=A B\left(C C^{-1}\right) B^{-1} A^{-1}=A\left(B B^{-1}\right) A^{-1}=A A^{-1}=I
$$

and similarly

$$
D(A B C)=\left(C^{-1} B^{-1} A^{-1}\right)(A B C)=C^{-1} B^{-1}\left(A^{-1} A\right) B C=C^{-1}\left(B^{-1} B\right) C=C^{-1} C=I
$$

Exercises 2.3 (p. 123)

Assignment: Do \#13, 14
13. Note that, for this problem, all matrices are $n \times n$.
(a) True. (Theorem $8(\mathrm{~d}) \Leftrightarrow(\mathrm{b})$)
(b) True. (Theorem $8(\mathrm{~h}) \Leftrightarrow(\mathrm{e})$)
(c) False, if A is noninvertible. (Theorem $8(\mathrm{a}) \Leftrightarrow(\mathrm{g})$)
(d) True. By Theorem $8(\mathrm{~d}) \Leftrightarrow(\mathrm{c})$, if $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution, A does not have n pivot positions. Since it can't have more than n pivot positions, it must have fewer.
(e) True. (Theorem 8 (a) $\Leftrightarrow(\mathrm{l})$)
14. (a) True. (Theorem $8(\mathrm{j}) \Leftrightarrow(\mathrm{k})$)
(b) True. (Theorem 8 (h) $\Leftrightarrow(\mathrm{e})$)
(c) True. If the equation is consistent for all \mathbf{b}, by Theorem $8, A$ has exactly n pivot positions, one in each column. Therefore, for every augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$, there are no free variables, so the solution is always unique.
(d) False. It's a trick question. For an $n \times n$ matrix, the linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ always maps \mathbb{R}^{n} into \mathbb{R}^{n}. The real question is whether the transformation is onto \mathbb{R}^{n}.
(e) True. (Theorem $8(\mathrm{~g}) \Leftrightarrow(\mathrm{f})$)

