Pet Store Puzzle

Pet store owner orders assistant to take inventory of dogs and birds. Assistant returns and proudly announces there are 8 heads and 22 feet in total.

How many dogs and birds are there?

Let x be the number of dogs. Let y be the number of birds.

$\int x + y = 3$	8 (heads)
$\int 4x + 2y = 2x$	2 (feet)

These are two *simultaneous equations* in two *variables* or *unknowns*.

Goal: Solve the simultaneous equations.

That is, find values for the variables that satisfy both equations simultaneously.

1

Graphical Solution

2

Our Goal

Study *systems of linear equations* in detail and learn how to solve them in general.

We will:

- define a system of linear equations;
- represent such a system as a *matrix*;
- describe a general solution method (using the matrix representation).

Linear Equations or Not?

- (a) $x_1 = 6 4x_2$
- (b) $x_1(1-x_2) = x_3$
- (c) $\sqrt{2}x_1 + x_2 = \pi x_3$
- (d) $\sqrt{2x_1} + x_2 = \pi x_3$

Section 1.1:

Systems of Linear Equations

Definition: A *linear equation* in the variables or unknowns x_1, \ldots, x_n is one that can be written in the form

$$a_1x_1 + \dots + a_nx_n = b$$

where a_1, \ldots, a_n and b are real (or complex) numbers. The numbers a_1, \ldots, a_n are called the *coefficients*.

Definition: A system of linear equations or a linear system is a collection of one or more linear equations in the same unknowns x_1, \ldots, x_n .

e.g.,

$$\begin{cases} x+y=8\\ 4x+2y=22 \end{cases} \begin{cases} x_2+4x_3=-8\\ -x_1-x_4=0\\ x_1+8x_4+x_5=-1 \end{cases}$$

Definition: A *solution* of a linear system is a list of numbers (s_1, \ldots, s_n) that makes every equation of the system true when s_1, \ldots, s_n are substituted for x_1, \ldots, x_n respectively.

Definition: The *solution set* of a linear system is the set of all solutions.

e.g.,

 $\begin{cases} x + y = 8\\ 4x + 2y = 22 \end{cases}$ has solution (x, y) = (3, 5).

The solution set is the singleton set $\{(3,5)\}$.

6

Fact: (proved later) Any system of linear equations has either:

- (a) No solutions;
- (b) Exactly one (unique) solution;
- (c) Infinitely many solutions.

No other result is possible.

Remember: (2 equations in 2 unknowns)

Definition: A linear system is *consistent* if it has at least one solution. Otherwise, it is *inconsistent*.

Matrix Notation

Definition: A matrix (plural: matrices) is a rectangular table (2-dimensional array) of numbers. Its *size* is the number of rows and columns. A matrix with m rows and n columns is an $m \times n$ matrix.

The numbers in a matrix are its *entries* or *elements*.

e.g.,
$$2 \times 3$$
 matrix 3×3 matrix
 $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 2 \end{bmatrix}$ $\begin{bmatrix} 3 & 0 & 1 \\ -1 & \frac{4}{5} & 2 \\ \sqrt{2} & 80 & 0 \end{bmatrix}$
 1×1 matrix 4×1 matrix
 $\begin{bmatrix} -\pi \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$

Note: Rows and columns are counted starting with 1.

Given a linear system:

$$\begin{cases} x_2 + 4x_3 = -8\\ -x_1 & -x_4 = 0\\ x_1 & +8x_4 + x_5 = -1 \end{cases}$$

Definition: The *coefficient matrix* of a linear system is the matrix of coefficients:

0	1	4	0	0
-1	0	0	-1	0
1	0	0	8	1

The *augmented matrix* also includes the right-hand side as an additional column:

0	1	4	0	0	-8
-1	0	0	-1	0	0
1	0	0	8	1	-1

Definition: *Elementary row operations* (*EROs*) on a matrix are:

- 1. (Replacement) Replace a row by the sum of itself and a multiple of another row;
- 2. (Interchange) Interchange two rows;
- 3. (Scaling) Multiply a whole row by a nonzero constant.

Fact: EROs are reversible. That is, for every ERO there is another ERO that "undoes" it:

original ERO	undone by
$R1 \rightarrow R1 + c \cdot R2$	$R1 \rightarrow R1 - c \cdot R2$
$R1\leftrightarrow R2$	$R1\leftrightarrow R2$
$R1 ightarrow c \cdot R1$	$R1 ightarrow rac{1}{c} \cdot R1$

10

Definition: Two linear systems are *equivalent* if they have the same solution set.

Definition: Two matrices are *row equivalent* if there is a sequence of EROs that transforms the first to the second.

Fact: If the augmented matrices of two linear systems are row equivalent, the two systems are equivalent (have the same solution set).

Section 1.2: Row Reduction and Echelon Forms

Definition: A row of a matrix is a *zero row* if all its elements are zero. Otherwise, it is a *nonzero row*.

The *leading entry* of a nonzero row is the leftmost nonzero entry.

Definition: A matrix is in *echelon form* (or *row echelon form*) if all of the following hold:

- 1. all nonzero rows are above all zero rows;
- each leading entry (of a nonzero row) is in a column to the right of the leading entry of the row above it;
- 3. all entries in a column below a leading entry are zero.

A matrix in echelon form is called an *echelon matrix*.

13

Examples:

in echelon form:

ГО	2	1	1	37							
0	0	$^{-1}$	0	8	[1	0	0	2	0	0]	[0]
0	0	0	0	1	0	1	0	2	0	0	
0	0	0	0	Ó	0	0	0	0	1	0	[U]
Γo	0	0	0	0]	L					_	

not in echelon form:

「1 0 0	0 0 0 0	0 0 1 0	1 0 1 1	1 0 0 0	0 0 1 1	0 0 0	0 0 0	$\begin{smallmatrix} 1\\ -1\\ 0 \end{smallmatrix}$	0 0 0	2 2 1	$\begin{bmatrix} -1\\0\\0 \end{bmatrix}$	0 1	1 0]
--------------	------------------	------------------	------------------	------------------	------------------	-------------	-------------	--	-------------	-------------	--	--------	---------

14

Definition: A matrix is in *reduced echelon* form (or *reduced row echelon form*) if it is in echelon form (satisfying 1–3 above) and **also**:

- 4. every leading entry is 1;
- 5. every leading entry is the *only* nonzero entry in its column (entries below and above are zero).

A matrix in reduced echelon form is called a *reduced echelon matrix*.

Examples:

in reduced echelon form:

$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 4 & 2 & 0 & 0 \\ 0 & 0 & 1 & 8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	1 0	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	0 1	3 5]
--	--------	---------------------------------------	--------	---------

in echelon form but $\ensuremath{\textbf{not}}$ reduced echelon form:

1 0 0	0 1 0	0 0 2))))	1 0 0	0 0 0	4 1 0	3 0 1 0	2 0 4	
L	Ũ	_]	Ľ	C	0	0	0	0	0]	

We can apply EROs to transform a matrix into echelon form or even reduced echelon form.

A matrix is equivalent to many different echelon matrices, but:

Theorem: (proved in a future class) Every matrix is row equivalent to one and only one reduced echelon matrix.

Definition: If a matrix A is row equivalent to a matrix U in echelon form, we call U an *echelon form of* A; if U is in reduced echelon form, we call U **the** *reduced echelon form of* A.

Fact: Every echelon form of a matrix has leading entries in the same positions.

Definition: We call these positions the *pivot positions* of the matrix. We call the columns in which pivot positions appear the *pivot columns*.

17